早教吧作业答案频道 -->数学-->
如图,⊙O中,AB是直径,BC是弦,弦ED⊥AB与点F,交BC于点G,延长ED到点P,使得PC=PG.(1)求证:直线PC与⊙O相切;(2)当点C在劣弧AD上运动时,其他条件不变,若点G是BC的中点试探究CG、BF
题目详情
如图,⊙O中,AB是直径,BC是弦,弦ED⊥AB与点F,交BC于点G,延长ED到点P,使得PC=PG.
(1)求证:直线PC与⊙O相切;
(2)当点C在劣弧AD上运动时,其他条件不变,若点G是BC的中点试探究CG、BF、BO三者之间的数量关系,并说明理由.
(1)求证:直线PC与⊙O相切;
(2)当点C在劣弧AD上运动时,其他条件不变,若点G是BC的中点试探究CG、BF、BO三者之间的数量关系,并说明理由.
▼优质解答
答案和解析
(1)证明:连接OC,
∵OB=OC,
∴∠OBC=∠OCB,
∵PC=PG,
∴∠PGC=∠PCG,
∵∠PGC=∠BGF,
∴∠BGF=∠PCG,
∵ED⊥AB,
∴∠OBC+∠BGF=90°,
∴∠PCG+∠BCF=90°,即∠FCP=90°,则OF⊥PC,
∴直线PC是圆的切线;
(2)结论:CG2=BF•BO.
证明:连接OG,
则OG⊥BC,
∴∠OCP=∠BFG=90°,
∵∠B=∠B,
∴△OBG∽△GBF,
∴
=
,
∴BG2=OB•BF,
又∵BG=CG,
∴CG2=OB•BF.
∵OB=OC,
∴∠OBC=∠OCB,
∵PC=PG,
∴∠PGC=∠PCG,
∵∠PGC=∠BGF,
∴∠BGF=∠PCG,
∵ED⊥AB,
∴∠OBC+∠BGF=90°,
∴∠PCG+∠BCF=90°,即∠FCP=90°,则OF⊥PC,
∴直线PC是圆的切线;
(2)结论:CG2=BF•BO.
证明:连接OG,
则OG⊥BC,
∴∠OCP=∠BFG=90°,
∵∠B=∠B,
∴△OBG∽△GBF,
∴
OB |
BG |
BG |
BF |
∴BG2=OB•BF,
又∵BG=CG,
∴CG2=OB•BF.
看了 如图,⊙O中,AB是直径,B...的网友还看了以下:
在平行四边形ABCD中,点E,F分别是线段AD,BC上的两动点,点E从点A向D运动在平行四边形AB 2020-05-13 …
(2011•石家庄二模)如图1,在梯形ABCD中,AD∥BC,∠C=90°,点E从点B出发,以每秒 2020-05-14 …
某带电粒子仅在电场力作用下,由A点运动到B点,如图所示,可以判定()A.粒子在A点的加速度大于在B 2020-05-15 …
如图,椭圆E:x^2/100+y^2/25=1的上顶点为A,直线y=-4交椭圆E于点B,C(点B在 2020-05-16 …
弧AEC是半径a的半圆,AC为直径,点E为弧AC的中点,点B和点C为线段AD的三...弧AEC是半 2020-07-04 …
如图,以G(0,1)为圆心,半径为2的圆与x轴交于A、B两点,与y轴交于C、D两点,点E为⊙G上一 2020-07-14 …
如图所示,在矩形ABCD中,AD=10,DC=8,点E为AB边上一点,△BCE沿EC所在直线翻折, 2020-07-15 …
已知AD//BC,AB⊥AD,点E点F分别在射线AD,射线BC上,若点E与点B关于AC对称,点E点 2020-07-21 …
如图,已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且|AF|=3 2020-07-30 …
如图1,△ABC中,AB=AC,过B点作射线BE,过C点作射线CF,使∠ABE=∠ACF,且射线BE 2020-11-03 …