早教吧作业答案频道 -->其他-->
正方形ABCD中,将一个直角三角板的直角顶点与点A重合,一条直角边与边BC交于点E(点E不与点B和点C重合),另一条直角边与边CD的延长线交于点F.(1)如图①,求证:AE=AF;(2)如图②,
题目详情
正方形ABCD中,将一个直角三角板的直角顶点与点A重合,一条直角边与边BC交于点E(点E不与点B和点C重合),另一条直角边与边CD的延长线交于点F.
(1)如图①,求证:AE=AF;
(2)如图②,此直角三角板有一个角是45°,它的斜边MN与边CD交于点G,且点G是斜边MN的中点,连接EG,求证:EG=BE+DG.
(3)在(2)的条件下,如果
=
,那么点G是否一定是边CD的中点?请说明理由.
(1)如图①,求证:AE=AF;
(2)如图②,此直角三角板有一个角是45°,它的斜边MN与边CD交于点G,且点G是斜边MN的中点,连接EG,求证:EG=BE+DG.
(3)在(2)的条件下,如果
AB |
GF |
5 |
6 |
▼优质解答
答案和解析
(1)正方形ABCD中,AB=AD,
∠ABC=∠ADC=∠BAD=90°
∴∠ABC=∠ADF=90°,
∵∠EAF=90°,∴∠BAE=∠DAF,
在△ABE和△ADF中
,
∴△ABE≌△ADF(ASA),
∴AE=AF;
(2)连接AG,
∵点G是斜边MN的中点,∴∠EAG=∠FAG=45°,
AG=AG,
在△AEG和△AFG中
,
∴△AEG≌△AFG(SAS),
∴EG=GF,
∴EG=DG+DF,
∵BE=DF,
∴EG=BE+DG;
(3)∵
=
,
∴设AB=5k,GF=6k,
设BE=x,则CE=6k-x,EG=5k,
CF=CD+DF=6k+x,
CG=CF-GF=6k+x-5k=k+x,
∴Rt△ECG中,(6k-x)2+(k+x)2=(5k)2,
∴2x2-10kx+12k2=0 即x2-5kx+6k2=0,
解得:x1=2k,x2=3k,
∴CG=3k或CG=4k,
两种情况都成立,
∴点G不一定是边CD的中点.
∠ABC=∠ADC=∠BAD=90°
∴∠ABC=∠ADF=90°,
∵∠EAF=90°,∴∠BAE=∠DAF,
在△ABE和△ADF中
|
∴△ABE≌△ADF(ASA),
∴AE=AF;
(2)连接AG,
∵点G是斜边MN的中点,∴∠EAG=∠FAG=45°,
AG=AG,
在△AEG和△AFG中
|
∴△AEG≌△AFG(SAS),
∴EG=GF,
∴EG=DG+DF,
∵BE=DF,
∴EG=BE+DG;
(3)∵
AB |
GF |
5 |
6 |
∴设AB=5k,GF=6k,
设BE=x,则CE=6k-x,EG=5k,
CF=CD+DF=6k+x,
CG=CF-GF=6k+x-5k=k+x,
∴Rt△ECG中,(6k-x)2+(k+x)2=(5k)2,
∴2x2-10kx+12k2=0 即x2-5kx+6k2=0,
解得:x1=2k,x2=3k,
∴CG=3k或CG=4k,
两种情况都成立,
∴点G不一定是边CD的中点.
看了 正方形ABCD中,将一个直角...的网友还看了以下:
①两点之间,最短.确定一条直线,经过一点有且只有条直线与已知直线垂直.直线外一点与直线上各点连结的 2020-06-04 …
我们知道,“两点之间线段最短”,“直线外一点与直线上各点连线的所有线段中,垂线段最短”.在此基础上 2020-06-17 …
已知一点与一直线求过点与直线平行的线的方程A(2,-4)5x-2y=4还有一题求过点与直线垂直的线 2020-07-21 …
下列说法正确的是()A.过一点有且只有一条直线与已知直线垂直B.直线外一点与直线上各点连接的所有线 2020-07-29 …
角α的顶点与直角坐标系原点O重合,始边与x轴的非负半轴重合,终边与单位圆交于点P,且α∈(0,π) 2020-07-30 …
已知极坐标系的极点与直角坐标系的坐标原点重合、极轴与x轴的正半轴重合,若直线l的极坐标方程为ρsi 2020-07-31 …
点与直线垂直怎么求直线根据下列条件,写出满足条件的直线的一般式方程1)经过直线2x-y+1=0与直 2020-08-01 …
下列说法中不正确的是()A.垂线是直线B.互为邻补角的两个角的平分线一定垂直C.过一个已知点有且只 2020-08-02 …
如何通过直线上一点画出任意直角三角形不可在与点垂直的位置画线点点-----------80----- 2020-11-03 …
直角三角形中斜边上的中点与直角所连直线之间的关系就是在RT三角形中斜边上的中点与两条直角边交点所连线 2021-01-22 …