早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知三阶实对称矩阵A的特征值为0.1.1,0对应的特征向量为(0,1,1)T,求特征值1对应的特征向量和矩阵A设1的特征向量(a,b,c)则(0,1,1)(a,b,c)=b+c=0.得两个特征向量(1,1,-1),(1,-1,1).这个不太懂

题目详情
已知三阶实对称矩阵A的特征值为0.1.1,0对应的特征向量为(0,1,1)T,求特征值1对应的特征向量和矩阵A
设1的特征向量(a,b,c)则(0,1,1)(a,b,c)=b+c=0.得两个特征向量(1,1,-1),(1,-1,1).这个不太懂
▼优质解答
答案和解析
实对称阵对应不同特征值的特征向量正交.设1的特征向量(a,b,c)则(0,1,1)(a,b,c)=b+c=0.得两个特征向量(1,1,-1),(1,-1,1).所得T=((0,1,1)'(1,1,-1)'(1,-1,1)'),T-1=0.25((0,2,2)(2,1,-3)(2,-1,1)).A=(T-1)diag(0,1,1)T...