早教吧作业答案频道 -->数学-->
(2007•福州)如图,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,
题目详情
(2007•福州)如图,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连接PA,PB,构成∠PAC,∠APB,∠PBD三个角.(提示:有公共端点的两条重合的射线所组成的角是0°角)
(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;
(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)
(3)当动点P落在第③部分时,全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点P的具体位置和相应的结论.选择其中一种结论加以证明.
(1)当动点P落在第①部分时,求证:∠APB=∠PAC+∠PBD;
(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)
(3)当动点P落在第③部分时,全面探究∠PAC,∠APB,∠PBD之间的关系,并写出动点P的具体位置和相应的结论.选择其中一种结论加以证明.
▼优质解答
答案和解析
(1)解法一:如图1延长BP交直线AC于点E.
∵AC∥BD,∴∠PEA=∠PBD.
∵∠APB=∠PAE+∠PEA,
∴∠APB=∠PAC+∠PBD;
解法二:如图2
过点P作FP∥AC,
∴∠PAC=∠APF.
∵AC∥BD,∴FP∥BD.
∴∠FPB=∠PBD.
∴∠APB=∠APF+∠FPB
=∠PAC+∠PBD;
解法三:如图3,
∵AC∥BD,
∴∠CAB+∠ABD=180°,
∠PAC+∠PAB+∠PBA+∠PBD=180°.
又∠APB+∠PBA+∠PAB=180°,
∴∠APB=∠PAC+∠PBD.
(2)不成立.
(3)(a)
当动点P在射线BA的右侧时,结论是
∠PBD=∠PAC+∠APB.
(b)当动点P在射线BA上,
结论是∠PBD=∠PAC+∠APB.
或∠PAC=∠PBD+∠APB或∠APB=0°,
∠PAC=∠PBD(任写一个即可).
(c)当动点P在射线BA的左侧时,
结论是∠PAC=∠APB+∠PBD.
选择(a)证明:
如图4,连接PA,连接PB交AC于M.
∵AC∥BD,
∴∠PMC=∠PBD.
又∵∠PMC=∠PAM+∠APM(三角形的一个外角等于与它不相邻的两个内角的和),
∴∠PBD=∠PAC+∠APB.
选择(b)证明:如图5
∵点P在射线BA上,∴∠APB=0度.
∵AC∥BD,∴∠PBD=∠PAC.
∴∠PBD=∠PAC+∠APB
或∠PAC=∠PBD+∠APB
或∠APB=0°,∠PAC=∠PBD.
选择(c)证明:
如图6,连接PA,连接PB交AC于F
∵AC∥BD,∴∠PFA=∠PBD.
∵∠PAC=∠APF+∠PFA,
∴∠PAC=∠APB+∠PBD.
∵AC∥BD,∴∠PEA=∠PBD.
∵∠APB=∠PAE+∠PEA,
∴∠APB=∠PAC+∠PBD;
解法二:如图2
过点P作FP∥AC,
∴∠PAC=∠APF.
∵AC∥BD,∴FP∥BD.
∴∠FPB=∠PBD.
∴∠APB=∠APF+∠FPB
=∠PAC+∠PBD;
解法三:如图3,
∵AC∥BD,
∴∠CAB+∠ABD=180°,
∠PAC+∠PAB+∠PBA+∠PBD=180°.
又∠APB+∠PBA+∠PAB=180°,
∴∠APB=∠PAC+∠PBD.
(2)不成立.
(3)(a)
当动点P在射线BA的右侧时,结论是
∠PBD=∠PAC+∠APB.
(b)当动点P在射线BA上,
结论是∠PBD=∠PAC+∠APB.
或∠PAC=∠PBD+∠APB或∠APB=0°,
∠PAC=∠PBD(任写一个即可).
(c)当动点P在射线BA的左侧时,
结论是∠PAC=∠APB+∠PBD.
选择(a)证明:
如图4,连接PA,连接PB交AC于M.
∵AC∥BD,
∴∠PMC=∠PBD.
又∵∠PMC=∠PAM+∠APM(三角形的一个外角等于与它不相邻的两个内角的和),
∴∠PBD=∠PAC+∠APB.
选择(b)证明:如图5
∵点P在射线BA上,∴∠APB=0度.
∵AC∥BD,∴∠PBD=∠PAC.
∴∠PBD=∠PAC+∠APB
或∠PAC=∠PBD+∠APB
或∠APB=0°,∠PAC=∠PBD.
选择(c)证明:
如图6,连接PA,连接PB交AC于F
∵AC∥BD,∴∠PFA=∠PBD.
∵∠PAC=∠APF+∠PFA,
∴∠PAC=∠APB+∠PBD.
看了 (2007•福州)如图,直线...的网友还看了以下:
、下图1为某地区的平面图,图2为图1中河流R的纵剖面图,表1为图1中P地的月平均温度和月平均降水数 2020-05-01 …
某科考队结束了两个月的海上考察,于4月21日返回P地.图为P地所在区域当日某时地面形势图.读图回答 2020-06-13 …
在平面直角坐标系中,抛物线y=-12x2+bx+c与x轴交于点A,B,与y轴交于点C,直线y=x+ 2020-07-19 …
已知矩形ABCD和点P,当点P在BC上任一位置(如图(1)所示)时,易证得结论:PA2+PC2=P 2020-07-30 …
如图,圆C:x2+y2+2x-3=0内有一点P(-2,1),AB为过点P且倾斜角为α的弦.(1)当 2020-08-01 …
如图,已知矩形ABCD和点P,当点P在边BC上任一位置(如图①所示)时,易证得结论:PA2+PC2 2020-08-01 …
已知圆:x的平方+y的平方=8,内有一点P(-1,2),AB为过点P的弦,且直线AB的倾斜角为m. 2020-08-01 …
某科考队结束了两个月的海上考察,于4月21日返回到P地.如图为P地所在区域当日某时地面形势图.读图回 2020-11-21 …
在平面直角坐标系xOy中,一直线经过点A(-3,0),点B(0,3),P的圆心P的坐标为(1,0), 2020-12-25 …
已知,AB∥CD,点M、N分别在AB、CD上,点P是一个动点,连接MP、NP.(1)当动点P落在图1 2021-01-12 …