早教吧作业答案频道 -->数学-->
高一三角恒等变形的有关问题1..在三角形ABC中,若sinAsingC=(cosA/2)^2,则三角形ABC是?答案等腰三角形2.已知sinα=cos2α,α∈(π/2,π),则cotα的值为?答案根号33.已知α,β为锐角,且sinα-sinβ=-&
题目详情
高一三角恒等变形的有关问题
1..在三角形ABC中,若sinAsingC=(cosA/2)^2,则三角形ABC是?【答案等腰三角形】
2.已知sinα=cos2α,α∈(π/2,π),则cotα的值为?【答案根号3】
3.已知α,β为锐角,且sinα-sinβ=-½,cosα-cosβ=½,则tan(α-β)的值为?【答案-根号7/3】
1..在三角形ABC中,若sinAsingC=(cosA/2)^2,则三角形ABC是?【答案等腰三角形】
2.已知sinα=cos2α,α∈(π/2,π),则cotα的值为?【答案根号3】
3.已知α,β为锐角,且sinα-sinβ=-½,cosα-cosβ=½,则tan(α-β)的值为?【答案-根号7/3】
▼优质解答
答案和解析
1、
[cos(A/2)]^2=(cosA+1)/2
因此原式可化为
2sinAsinC=cosA+1
令A=30°
很容易得到
sinC=1+(1/2)根号3
实际上sinC不可能大于一
因此我有足够的理由楼主给的题目错了
根据我做题的过程
如果我没猜错的话
楼主的题目应该是
在三角形ABC中,若sinBsinC=(cosA/2)^2,则三角形ABC是
如果用积化和差公式
解法如下:
[cos(A/2)]^2=(cosA+1)/2
因此原式可化为
2sinBsinC=cosA+1
2sinBsinC-(cosA+1)
=2sinBsinC-(-cos(π-(B+C))+1)
=2sinBsinC+cos(B+C)-1
=2sinBsinC+cosBcosC-sinBsinC-1
=cosBcosC+sinBsinC-1
=cos(B-C)-1
=0
因此cos(B-C)=1
又因为B和C在三角形中
因此B-C=0
B=C
因此三角形ABC是等腰三角形
如果用积化和差公式来解
解法如下
sinαsinβ = [cos(α-β)-cos(α+β)] /2
则2sinAsinB=cos(B-C)-cos(B+C)=cosA+1
即
cos(B-C)-cos(B+C)=-cos(B+C)+1
即cos(B-C)=1
可得B=C
第二题%%%%%%%%%%%%%%%%%%%%
cos2α=(cosα)^2-(sinα)^2=1-2(sinα)^2
因此
sinα=1-2(sinα)^2
即2(sinα)^2-sinα-1=0
即(2sinα-1)(sinα+1)=0
解得sinα=1/2或者sinα=-1
又α∈(π/2,π),
因此
sinα=1/2
解得
α=30°
因此
cotα=cot30°=根号3
第三题%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
(sinα-sinβ)^2+(cosα-cosβ)^2
=(sinα)^2+(sinβ)^2-2sinαsinβ+(cosα)^2+(cosβ)^2-2cosαcosβ
=2-2sinαsinβ-2cosαcosβ
=1/2
则cosαcosβ+sinαsinβ=1-1/4=3/4
即cos(α-β)=3/4
又α,β为锐角,
且由题得
sinαcosβ
因此α-β
[cos(A/2)]^2=(cosA+1)/2
因此原式可化为
2sinAsinC=cosA+1
令A=30°
很容易得到
sinC=1+(1/2)根号3
实际上sinC不可能大于一
因此我有足够的理由楼主给的题目错了
根据我做题的过程
如果我没猜错的话
楼主的题目应该是
在三角形ABC中,若sinBsinC=(cosA/2)^2,则三角形ABC是
如果用积化和差公式
解法如下:
[cos(A/2)]^2=(cosA+1)/2
因此原式可化为
2sinBsinC=cosA+1
2sinBsinC-(cosA+1)
=2sinBsinC-(-cos(π-(B+C))+1)
=2sinBsinC+cos(B+C)-1
=2sinBsinC+cosBcosC-sinBsinC-1
=cosBcosC+sinBsinC-1
=cos(B-C)-1
=0
因此cos(B-C)=1
又因为B和C在三角形中
因此B-C=0
B=C
因此三角形ABC是等腰三角形
如果用积化和差公式来解
解法如下
sinαsinβ = [cos(α-β)-cos(α+β)] /2
则2sinAsinB=cos(B-C)-cos(B+C)=cosA+1
即
cos(B-C)-cos(B+C)=-cos(B+C)+1
即cos(B-C)=1
可得B=C
第二题%%%%%%%%%%%%%%%%%%%%
cos2α=(cosα)^2-(sinα)^2=1-2(sinα)^2
因此
sinα=1-2(sinα)^2
即2(sinα)^2-sinα-1=0
即(2sinα-1)(sinα+1)=0
解得sinα=1/2或者sinα=-1
又α∈(π/2,π),
因此
sinα=1/2
解得
α=30°
因此
cotα=cot30°=根号3
第三题%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
(sinα-sinβ)^2+(cosα-cosβ)^2
=(sinα)^2+(sinβ)^2-2sinαsinβ+(cosα)^2+(cosβ)^2-2cosαcosβ
=2-2sinαsinβ-2cosαcosβ
=1/2
则cosαcosβ+sinαsinβ=1-1/4=3/4
即cos(α-β)=3/4
又α,β为锐角,
且由题得
sinαcosβ
因此α-β
看了 高一三角恒等变形的有关问题1...的网友还看了以下:
1.一,二,三年级同学共做航空模型56个,其中一,二年级所做航空模型的比是3:5,一,三年级所做航 2020-04-27 …
解决数学方程(三元一次)最好有解法,事后我会加分某次知识竞赛共有30道题,评分标准如下:答对一题加 2020-05-14 …
在梯形ABCD中,CD//AB,S三角形 AOB=9,S三角形COD=4,求梯形ABCD的 面积在 2020-05-16 …
已知三角形ABC的三个顶点分别是A(1,2),B(4,1),C(3,4),P是边AB上一点,PQ/ 2020-05-23 …
三角板有()个直角,()个锐角.西南师大版数学考卷中,有一填空题如下:三角板有()个直角,()个锐 2020-06-03 …
每只小虫子都用前肢推着大过身体两三倍的食物.(缩句)教师们在争议三个答案:1、虫子推着食物.2、前 2020-06-06 …
三角形ABC中,AB=AC=5,tanC=3/4,点D是BC边上一个动点,DE//AC交AB与E, 2020-08-01 …
再一次口试中,要从20道题中随机抽出6道题进行回答,答对了其中的5道题就获得优秀,答对其中的4道题就 2020-11-06 …
关于不等式的问题在考试中,只有35道选择题供考生作答.答对一题得3分,打错扣1分.某人回答了全部问题 2020-11-22 …
工地上堆放了一对搅拌好的三合土,呈圆锥形,工人叔叔测得底面周长约为120M,高是6M.π取31.请你 2020-12-30 …