早教吧 育儿知识 作业答案 考试题库 百科 知识分享

某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.

题目详情
某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.
作业搜
(1)请解释图中点D的横坐标、纵坐标的实际意义;
(2)求线段AB所表示的y1与x之间的函数表达式;
(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?
▼优质解答
答案和解析
(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;

(2)设线段AB所表示的y1与x之间的函数关系式为y=k1x+b1
∵y=k1x+b1的图象过点(0,60)与(90,42),
b1=60
90k1+b1=42

k1=-0.2
b1=60

∴这个一次函数的表达式为;y=-0.2x+60(0≤x≤90);

(3)设y2与x之间的函数关系式为y=k2x+b2
∵经过点(0,120)与(130,42),
b2=120
130k2+b2=42

解得:
k2=-0.6
b2=120

∴这个一次函数的表达式为y2=-0.6x+120(0≤x≤130),
设产量为xkg时,获得的利润为W元,
当0≤x≤90时,W=x[(-0.6x+120)-(-0.2x+60)]=-0.4(x-75)2+2250,
∴当x=75时,W的值最大,最大值为2250;
当90≤x≤130时,W=x[(-0.6x+120)-42]=-0.6(x-65)2+2535,
由-0.6<0知,当x>65时,W随x的增大而减小,∴90≤x≤130时,W≤2160,
∴当x=90时,W=-0.6(90-65)2+2535=2160,
因此当该产品产量为75kg时,获得的利润最大,最大值为2250.