早教吧作业答案频道 -->数学-->
设[a,b]是一个有限闭区间,如果对任意x0属于[a,b],f(x)在x=x0处的极限都存在,证明:f(x)在闭区间[a,b]上有界.求解答思路,是否用反证法?
题目详情
设[a,b]是一个有限闭区间,如果对任意x0属于[a,b],f(x)在x=x0处的极限都存在,证明:f(x)在闭区间[a,b]上有界.求解答思路,是否用反证法?
▼优质解答
答案和解析
反证:若f(x)在区间[a,b]上无界
则把这个闭区间分成两部分[a,x1][x1,b]
f(x)至少在其中一个区间上无界,继续划分这个区间,最终得到一个闭区间套.
根据闭区间套定理,区间套中存在唯一的点P∈[an ,bn ],n=1,2,3..
因为对任意xo属于[a,b],f(x)在x=xo处极限存在.
所以f(x)在P处存在极限.设极限为A,存在δ>0使得x∈(P-δ,P+δ)时,f(x)有界.
通过适当选取,使得(P-δ,P+δ)包含[an,bn]这个区间时,函数在区间内无界,所以矛盾.
则把这个闭区间分成两部分[a,x1][x1,b]
f(x)至少在其中一个区间上无界,继续划分这个区间,最终得到一个闭区间套.
根据闭区间套定理,区间套中存在唯一的点P∈[an ,bn ],n=1,2,3..
因为对任意xo属于[a,b],f(x)在x=xo处极限存在.
所以f(x)在P处存在极限.设极限为A,存在δ>0使得x∈(P-δ,P+δ)时,f(x)有界.
通过适当选取,使得(P-δ,P+δ)包含[an,bn]这个区间时,函数在区间内无界,所以矛盾.
看了 设[a,b]是一个有限闭区间...的网友还看了以下:
无穷小与极限为0的区别f(0)=0,f(x)在点X=0处可导的充分必要条件是limh->0f(2h 2020-04-27 …
函数f(x)=x^2-4x+c与函数g(x)=x+a/x在区间(0,+∞)上的同一点处有相同的最小 2020-05-13 …
设在区间[0,1]上f''(x)>0,则f'(0)f'(1)和f(1)-f(0)的大小顺序是设在区 2020-06-08 …
高数导数题设f(x)在x0处可导,且x0处导数>0,则存在δ>0,使得a、f(x)在区间﹙x0﹣δ 2020-06-10 …
已知函数f(x)=ax3-bx2+cx+b-a(a>0,b,c∈R)(1)设c=0①若a=b,f( 2020-06-12 …
已知函数y=f(x)的导函数为f撇(x)=3x的平方+2mx+9,f(x)在x=3处取得极值且发( 2020-08-01 …
在区间0,1上函数f(x)=nx(1-x)^n的最大值记为M(n)则lim(n趋向于无穷大时)M(n 2020-11-03 …
待解决设函数f(x)在x=0处可导,且f(0)=0,求下列极限设函数f(x)在x=0处可导,且f待解 2020-11-03 …
一个函数问题注意:以下e均指约等于2.7的那个e已知函数f(x)=(x^2-x-1/a)e^ax(a 2020-12-08 …
已知函数f(x)的导函数是f'(x)=3x^2+2mx+9,f(x)在x=3处取得极值,且f(0)= 2020-12-08 …