早教吧作业答案频道 -->数学-->
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f′(0)=0,证明:在开区间(-1,1)内至少存在一点ξ,使f′′′(ξ)=3.
题目详情
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)=1,f′(0)=0,
证明:在开区间(-1,1)内至少存在一点ξ,使f′′′(ξ)=3.
证明:在开区间(-1,1)内至少存在一点ξ,使f′′′(ξ)=3.
▼优质解答
答案和解析
方法一:
在x=0处,将函数f(x)按照泰勒公式展开,得:
f(x)=f(0)+f′(0)x+
f″(0)x2+
f″′(η)x3,其中η介于0与x之间,x∈[-1,1],
由已知可得:
0=f(-1)=f(0)+
f″(0)-
f″′(η1),(-1<η1<0),…①
1=f(1)=f(0)+
f″(0)+
f″′(η2),(0<η2<1),…②
②-①得:
f″′(η2)+f″′(η1)=6,
由于:f(x)具有三阶连续导数,
从而:f″′(x)在闭区间[η1,η2]上连续,
故:f″′(x)在闭区间[η1,η2]上有最大值和最小值,
设最大值和最小值分别为M和m,
则:m≤
≤M,
由闭区间上连续函数的介值定理,得:
至少存在一点ξ∈[η1,η2]⊂[-1,1],使得:
f″′(ξ)=
=3.
方法二:(应用三次罗尔定理)
作辅助函数:φ(x)=
x2(x+1)+(1+x)(1-x)f(0),
则:φ(1)=f(1),φ(-1)=f(-1),φ(0)=f(0),φ′(0)=f′(0),
令:F(x)=f(x)-φ(x),
则:F(0)=F(1)=F(-1)=0,
易知F(x)满足罗尔定理,
从而,∃ξ1∈(-1,0),∃ξ2∈(0,1),使得:F′(ξ1)=F′(ξ2)=0,
而:F′(0)=0,
于是:F′(ξ1)=F′(0)=F′(ξ2)=0,
易知:F(x)也是具有三阶连续导数的.
从而对F′(x)应用罗尔定理得:∃η1∈(ξ1,0),η2∈(0,ξ2),使得:F″(η1)=F″(η2)=0,
又:在闭区间[η1,η2]上F″(x)满足罗尔定理的条件,
从而:∃ξ∈(η1,η2),使得:F′″(ξ)=0,
而:F′″(x)=f′″(x)-φ′″(x)且φ′″(x)=3,
∴f′″(ξ)=3.
方法一:
在x=0处,将函数f(x)按照泰勒公式展开,得:
f(x)=f(0)+f′(0)x+
1 |
2! |
1 |
3! |
由已知可得:
0=f(-1)=f(0)+
1 |
2 |
1 |
6 |
1=f(1)=f(0)+
1 |
2 |
1 |
6 |
②-①得:
f″′(η2)+f″′(η1)=6,
由于:f(x)具有三阶连续导数,
从而:f″′(x)在闭区间[η1,η2]上连续,
故:f″′(x)在闭区间[η1,η2]上有最大值和最小值,
设最大值和最小值分别为M和m,
则:m≤
f″′(η1)+f″′(η2) |
2 |
由闭区间上连续函数的介值定理,得:
至少存在一点ξ∈[η1,η2]⊂[-1,1],使得:
f″′(ξ)=
f″′(η1)+f″′(η2) |
2 |
方法二:(应用三次罗尔定理)
作辅助函数:φ(x)=
1 |
2 |
则:φ(1)=f(1),φ(-1)=f(-1),φ(0)=f(0),φ′(0)=f′(0),
令:F(x)=f(x)-φ(x),
则:F(0)=F(1)=F(-1)=0,
易知F(x)满足罗尔定理,
从而,∃ξ1∈(-1,0),∃ξ2∈(0,1),使得:F′(ξ1)=F′(ξ2)=0,
而:F′(0)=0,
于是:F′(ξ1)=F′(0)=F′(ξ2)=0,
易知:F(x)也是具有三阶连续导数的.
从而对F′(x)应用罗尔定理得:∃η1∈(ξ1,0),η2∈(0,ξ2),使得:F″(η1)=F″(η2)=0,
又:在闭区间[η1,η2]上F″(x)满足罗尔定理的条件,
从而:∃ξ∈(η1,η2),使得:F′″(ξ)=0,
而:F′″(x)=f′″(x)-φ′″(x)且φ′″(x)=3,
∴f′″(ξ)=3.
看了 设函数f(x)在闭区间[-1...的网友还看了以下:
妈妈到工商银行存1万元钱,计划共存3年.工商银行储蓄利率如下:存期1年,存款利率是2.50%;存期 2020-05-16 …
玻片标本1.材料要求:。2.类型:。3.根据保存时间分类。(1)玻片标本(可长期保存)。(2)玻片 2020-07-11 …
设{an}为正项数列,则下列选择项正确的是()A.若an>an+1,则∞n=1(−1)n−1an收 2020-07-20 …
英语翻译1.储存商品不可直接与地面接触.一是为了避免潮湿;二是为了堆放整齐.2.要注意仓储区的温湿 2020-07-22 …
银行对存款人付给利息,这叫储蓄.存入的钱叫本金.一定存期(年、月或日)内的利息对本金的比叫利率.本 2020-07-26 …
设函数f(x)=limn→∞1+x1+x2n.讨论函数f(x)的间断点,其结论为()A.不存在间断点 2020-10-31 …
任民在2007年1月8日存人一笔20000元的一年期整存整取定期存款,假设一年期定期存款年利率1.9 2020-11-06 …
用正、负数填表.小明家的一个活期存折上有3000元.今年上半年存取钱情况分别为:1月份取钱800元, 2020-11-06 …
任民在2007年1月8日存人一笔20000元的一年期整存整取定期存款,假设一年期定期存款年利率1.9 2020-11-06 …
使得2n(n+1)(n+2)(n+3)+12可以表示为2个正整数平方和的自然数n存在几个?1.不存在 2020-12-23 …