早教吧作业答案频道 -->数学-->
小明为了通过描点法作出函数y=x2-x+1的图象,先取自变量x的7个值满足:x2-x1=x3-x2=…=x7-x6=d,再分别算出对应的y值,列出表:xx1x2x3x4x5x6x7y13713213143记m1=y2-
题目详情
小明为了通过描点法作出函数y=x2-x+1的图象,先取自变量x的7个值满足:
x2-x1=x3-x2=…=x7-x6=d,再分别算出对应的y值,列出表:
记m1=y2-y1,m2=y3-y2,m3=y4-y3,m4=y5-y4,…;s1=m2-m1,s2=m3-m2,s3=m4-m3,…
(1)判断s1、s2、s3之间关系,并说明理由;
(2)若将函数“y=x2-x+1”改为“y=ax2+bx+c(a≠0)”,列出表:
其他条件不变,判断s1、s2、s3之间关系,并说明理由;
(3)小明为了通过描点法作出函数y=ax2+bx+c(a≠0)的图象,列出表:
由于小明的粗心,表中有一个y值算错了,请指出算错的y值(直接写答案).
x2-x1=x3-x2=…=x7-x6=d,再分别算出对应的y值,列出表:
x | x1 | x2 | x3 | x4 | x5 | x6 | x7 |
y | 1 | 3 | 7 | 13 | 21 | 31 | 43 |
(1)判断s1、s2、s3之间关系,并说明理由;
(2)若将函数“y=x2-x+1”改为“y=ax2+bx+c(a≠0)”,列出表:
x | x1 | x2 | x3 | x4 | x5 | x6 | x7 |
y | y1 | y2 | y3 | y4 | y5 | y6 | y7 |
(3)小明为了通过描点法作出函数y=ax2+bx+c(a≠0)的图象,列出表:
x | x1 | x2 | x3 | x4 | x5 | x6 | x7 |
y | 10 | 50 | 110 | 190 | 290 | 412 | 550 |
▼优质解答
答案和解析
(1)s1=s2=s3.m1=y2-y1=3-1=2,
同理m2=4,m3=6,m4=8.
∴s1=m2-m1=4-2=2,
同理s2=2,s3=2.
∴s1=s2=s3.
(2)s1=s2=s3.
方法一:m1=y2-y1=ax22+bx2+c-(ax12+bx1+c)
=d[a(x2+x1)+b].
m2=y3-y2=ax32+bx3+c-(ax22+bx2+c)
=d[a(x3+x2)+b].
同理m3=d[a(x4+x3)+b].
m4=d[a(x5+x4)+b].
s1=m2-m1=d[a(x3+x2)+b]-d[a(x2+x1)+b]
=2ad2.
同理s2=2ad2.
s3=2ad2.
∴s1=s2=s3.
方法二:∵x2-x1=d,
∴x2=x1+d,
∴m1=y2-y1=a(x1+d)2+b(x1+d)+c-(ax12+bx1+c)
=d[a(2x1+d)+b].
又∵x3-x2=d,
∴x3=x2+d,
∴m2=y3-y2=a(x2+d)2+b(x2+d)+c-(ax22+bx2+c)
=d[a(2x2+d)+b].
同理m3=d[a(2x3+d)+b].
m4=d[a(2x4+d)+b].
s1=m2-m1=d[a(2x2+d)+b]-d[a(2x1+d)+b]
=2ad2.
同理s2=2ad2.s3=2ad2.
∴s1=s2=s3.
(3)412.
同理m2=4,m3=6,m4=8.
∴s1=m2-m1=4-2=2,
同理s2=2,s3=2.
∴s1=s2=s3.
(2)s1=s2=s3.
方法一:m1=y2-y1=ax22+bx2+c-(ax12+bx1+c)
=d[a(x2+x1)+b].
m2=y3-y2=ax32+bx3+c-(ax22+bx2+c)
=d[a(x3+x2)+b].
同理m3=d[a(x4+x3)+b].
m4=d[a(x5+x4)+b].
s1=m2-m1=d[a(x3+x2)+b]-d[a(x2+x1)+b]
=2ad2.
同理s2=2ad2.
s3=2ad2.
∴s1=s2=s3.
方法二:∵x2-x1=d,
∴x2=x1+d,
∴m1=y2-y1=a(x1+d)2+b(x1+d)+c-(ax12+bx1+c)
=d[a(2x1+d)+b].
又∵x3-x2=d,
∴x3=x2+d,
∴m2=y3-y2=a(x2+d)2+b(x2+d)+c-(ax22+bx2+c)
=d[a(2x2+d)+b].
同理m3=d[a(2x3+d)+b].
m4=d[a(2x4+d)+b].
s1=m2-m1=d[a(2x2+d)+b]-d[a(2x1+d)+b]
=2ad2.
同理s2=2ad2.s3=2ad2.
∴s1=s2=s3.
(3)412.
看了 小明为了通过描点法作出函数y...的网友还看了以下:
几道小学的抽屉原理1.从2,4,6,...,30这15个偶数中任取9个数,证明其中一定有两个数之和是 2020-03-30 …
明明小建和小羽拾贝壳他们一共138个贝壳明明每取走五个小建取走四个小建每取走五个小羽就取走六个分多 2020-04-27 …
为何超级何分布的期望算出来和二项分布的期望一样?例如,10个小球,4红6白,取三个,取球后放回或不 2020-05-15 …
盒子里装有同样多的红球和白球,小明每次取6个红球和4个白球,取了几次后,红球取完了,白球还剩十个. 2020-06-04 …
2016年6月9日是“端午节”,小明的妈妈为小明煮了6个粽子,其中腊肉馅2个,豆沙馅4个,小明随机 2020-06-20 …
请用关于抽屉原理的知识用文字证明下面的题目:1.从1到10这10个自然数中,任取6个,则至少有两个 2020-06-25 …
现有6件正品,3件次品,每次取一个,取后不放回,共取三次,恰有一次取到正品的概率本题答案为是四分之 2020-06-27 …
一个不透明的袋子中装有6个,蓝球8个,黄球6个,这些球除颜色外没有任何其他区别.现在从袋中取走若干 2020-07-27 …
一个不透明的袋子中装有6个,蓝球8个,黄球6个,这些球除颜色外没有任何其他区别.现在从袋中取走若干 2020-07-27 …
从2,4,6...30这15个偶数,任取9个数,证明一定有两个数之和是344+30=6+28=8+2 2020-11-20 …