早教吧 育儿知识 作业答案 考试题库 百科 知识分享

为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x(m2),种草所需费用y1(元)与x(m2)

题目详情
为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x(m2),种草所需费用y1(元)与x(m2)的函数关系式为y1=
k1x(0≤x<600)
k2x+b(600≤x≤1000)
,其图象如图所示:栽花所需费用y2(元)与x(m2)的函数关系式为y2=-0.01x2-20x+30000(0≤x≤1000).
作业搜
(1)请直接写出k1、k2和b的值;
(2)设这块1000m2空地的绿化总费用为W(元),请利用W与x的函数关系式,求出绿化总费用W的最大值;
(3)若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.
▼优质解答
答案和解析
(1)将x=600、y=18000代入y1=k1x,得:18000=600k1,解得:k1=30;
将x=600、y=18000和x=1000、y=26000代入,得:
600k2+b=18000
1000k2+b=26000

解得:
k2=20
b=6000


(2)当0≤x<600时,
W=30x+(-0.01x2-20x+30000)=-0.01x2+10x+30000,
∵-0.01<0,W=-0.01(x-500)2+32500,
∴当x=500时,W取得最大值为32500元;
当600≤x≤1000时,
W=20x+6000+(-0.01x2-20x+30000)=-0.01x2+36000,
∵-0.01<0,
∴当600≤x≤1000时,W随x的增大而减小,
∴当x=600时,W取最大值为32400,
∵32400<32500,
∴W取最大值为32500元;

(3)由题意得:1000-x≥100,解得:x≤900,
由x≥700,
则700≤x≤900,
∵当700≤x≤900时,W随x的增大而减小,
∴当x=900时,W取得最小值27900元.