早教吧 育儿知识 作业答案 考试题库 百科 知识分享

直角梯形ABCD中,AD∥BC,∠ABC=90,EF分别为边AD和BC上的点,且EF∥ABAD=2AE=2AB=4FC=4将四边行EFCD沿EF折起使AD=AE求证BC∥平面DAE求四棱锥D-AEFB的面积求面CBD与面DAE所成锐二面角的余弦值

题目详情
直角梯形ABCD中,AD∥BC,∠ABC=90,EF分别为边AD和BC上的点,且EF∥ABAD=2AE=2AB=4FC=4将四边行EFCD沿EF折起使AD=AE
求证BC∥平面DAE
求四棱锥D-AEFB的面积
求面CBD与面DAE所成锐二面角的余弦值
▼优质解答
答案和解析
1)因为AE∥BF CF∥DE
所以面BCF∥面ADE
因为BC在面BCF 内
所以BC∥面ADE
2) 3分之4√ 3
3)5分之3√ 5