早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=12AB=1,M是PB的中点.(1)求直线AC与PB所成角的余弦值;(2)求面AMC与面PMC所成锐二面角的大小的余弦值.

题目详情
已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=
1
2
AB=1,M是PB的中点.
(1)求直线AC与PB所成角的余弦值;
(2)求面AMC与面PMC所成锐二面角的大小的余弦值.
▼优质解答
答案和解析
因为PA⊥PD,PA⊥AB,AD⊥AB,以A为坐标原点AD为x轴,AB为y轴,AP为z轴,建立空间直角坐标系,
不妨设AD=1,则各点坐标为A(0,0,0)B(0,2,0),C(1,1,0),D(1,0,0),P(0,0,1),M(0,1,
1
2
)
(1)因
AC
=(1,1,0),
PB
=(0,2,−1),
故|
AC
|=
2
,|
PB
|=
5
AC
PB
=2,
所以cos<
AC
首页    语文    数学    英语    物理    化学    历史    政治    生物    其他     
Copyright © 2019 zaojiaoba.cn All Rights Reserved 版权所有 作业搜 
本站资料来自网友投稿及互联网,如有侵犯你的权益,请联系我们:105754049@qq.com
湘ICP备12012010号