早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设直线l与抛物线y2=4x相交于A、B两点,与圆(x-5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条.则r的取值范围是.

题目详情
设直线l与抛物线y2=4x相交于A、B两点,与圆(x-5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条.则r的取值范围是___.
▼优质解答
答案和解析
设A(x1,y1),B(x2,y2),M(x0,y0),
斜率存在时,设斜率为k,则y12=4x1,y22=4x2
相减得(y1+y2)(y1-y2)=4(x1-x2),
当l的斜率存在时,利用点差法可得ky0=2,
因为直线与圆相切,所以
y0
x0-5
=-
1
k
,所以x0=3,
即M的轨迹是直线x=3.
将x=3代入y2=4x,得y2=12,
∴-2
3
<y0<2
3

∵M在圆上,
∴(x0-5)2+y02=r2
∴r2=y02+4≤12+4=16,
∵直线l恰有4条,
∴y0≠0,
∴4<r2<16,
故2<r<4时,直线l有2条;
斜率不存在时,直线l有2条;
所以直线l恰有4条,2<r<4,
故答案为:2<r<4.