早教吧 育儿知识 作业答案 考试题库 百科 知识分享

抛物线一些公式的证明,希望有人能替我解答一下,如下过抛物线y^2=2px(p>0)焦点F作倾斜角为θ的直线L,L与抛物线相交于A(x1,y1),B(x2,y2),有①x1*x2=p^2/4,y1*y2=—P^2,要在直线过焦点时才能成

题目详情
抛物线一些公式的证明,希望有人能替我解答一下,如下
过抛物线y^2=2px(p>0)焦点F作倾斜角为θ的直线L,L与抛物线相交于A(x1,y1),B(x2,y2),有   ① x1*x2 = p^2/4 , y1*y2 = —P^2,要在直线过焦点时才能成立   ② 焦点弦长:|AB| = x1+x2+P = 2P/[(sinθ)^2]   ③ (1/|FA|)+(1/|FB|)= 2/P
▼优质解答
答案和解析
设直线为
y=k(x-p/2) ①
抛物线为
y^2=2px ②
由上两式可得
k^2y^2/2p-y-pk/2=0 .③
由③可知
y1y2=-p^2
由①③可知
y1y2=k^2[x1x2-p/2*(x1+x2)+p^2/4]
又x1+x2=(y1+y2)/k-p
由上带入可得
x1x2= p^2/4
弦长:|AB| = x1+x2+p不用说了吧,
至于|AB| = 2p/(sinθ)^2,由弦长公式
|AB|=√(1+1/k^2)[(y1+y2)^2-4y1y2] ④
带入③式可得
|AB|=|2p(1+k^2/k^2 令k=tanθ
解得|AB|=2p/(sinθ)^2
1/|FA|+1/|FB|=(|FA|+|FB|)/|FA| |FB|=(x1+x2+p)/(x1+p/2)(x2+p/2)
=(x1+x2+p)/[x1x2+p/2(x1+x2)+p^2/4]
带入①③以及已证结论x1x2= p^2/4
解得1/|FA|+1/|FB|=2/p
还有疑问请提,For the lich king