早教吧作业答案频道 -->数学-->
求曲线y=根号x的一条切线L,使该曲线与切线L及直线x=0,x=2所围成的平面图形面积最小.
题目详情
求曲线y=根号x的一条切线L,使该曲线与切线L及直线x=0,x=2所围成的平面图形面积最小.
▼优质解答
答案和解析
对y=√x求导数,得:y′=1/(2√x).
令切点的坐标为P(a,√a),则切线的斜率=1/(2√a),
∴切线的方程是y-√a=[1/(2√a)](x-a),∴y=x/(2√a)+√a/2.
显然,y=√x是抛物线y^2=x在第一象限的部分,∴y=√x在切线L的下方.
令y=√x、直线L、x=0、x=2所围成的区域面积为S.则:
S=∫(上限2、下限0)[x/(2√a)+√a/2-√x]dx
=[1/(2√a)]∫xdx+(√a/2)∫dx-∫√xdx
=[1/(2√a)]x^2|(上限2、下限0)+(√a/2)x|(上限2、下限0)
-(2/3)x^(3/2)|(上限2、下限0)
=2/√a+√a-(2/3)×2√2.
∴当2/√a=√a时,S最小,此时,√a=2.
∴满足条件的切线L的方程是y=x/4+1.
令切点的坐标为P(a,√a),则切线的斜率=1/(2√a),
∴切线的方程是y-√a=[1/(2√a)](x-a),∴y=x/(2√a)+√a/2.
显然,y=√x是抛物线y^2=x在第一象限的部分,∴y=√x在切线L的下方.
令y=√x、直线L、x=0、x=2所围成的区域面积为S.则:
S=∫(上限2、下限0)[x/(2√a)+√a/2-√x]dx
=[1/(2√a)]∫xdx+(√a/2)∫dx-∫√xdx
=[1/(2√a)]x^2|(上限2、下限0)+(√a/2)x|(上限2、下限0)
-(2/3)x^(3/2)|(上限2、下限0)
=2/√a+√a-(2/3)×2√2.
∴当2/√a=√a时,S最小,此时,√a=2.
∴满足条件的切线L的方程是y=x/4+1.
看了 求曲线y=根号x的一条切线L...的网友还看了以下:
有这样一数学题,已知曲线l上点的坐标都是方程f(x,y)=0的解,则下列命题正确的是………()其中C 2020-03-31 …
已知抛物线C:(y+3/4)^2=x对于过原点的直线L,曲线C上总存在两点已知抛物线C:(y+3/ 2020-04-11 …
曲线C由X2/9+y2/5=1(y≥0)和x2/9-y2/5=1(y≥0)两部分组成,若过点(0, 2020-05-15 …
已知直线l:y=kx+1交曲线C:y=ax^2(a>0)于P、Q两点,M为PQ中点,分别过P、Q两 2020-05-15 …
微积分曲线积分问题1.计算曲线积分∫L(L为下标)xds,其中曲线L:y=x²2.计算曲线积分∮L 2020-06-10 …
假设在过点O(0,0)和A(π,0)的曲线族y=asinx(a>0)中,有一条曲线L,使沿该曲线从 2020-06-22 …
如图,在平面直角坐标系xOy中,已知直线l:y=-x-1,双曲线y=1x,在l上取一点A1,过A1 2020-07-13 …
一个待解决的数学疑问……已知曲线l上点的坐标都是方程f(x,y)=0的解,则下列命题正确的是……… 2020-08-03 …
过点O(0,0)和A(π,0)的曲线族y=asinx(a>0)中,求一条曲线L,使沿该曲线O从到A的 2020-10-31 …
己知曲线C的参数方程是x=2cosθy=2sinθ(θ为参数),直线l过点M(1,0),倾斜角为α. 2020-11-27 …