早教吧 育儿知识 作业答案 考试题库 百科 知识分享

直棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=√2/2AB,证明BC‖平面A1CD

题目详情
直棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=√2/2AB,证明BC‖平面A1CD
▼优质解答
答案和解析
由题意得∠A1AC=90度,且AA1=AC
所以四边形A1ACC1为正方形
连接AC1交A1C于点O
连接DO,在三角形AC1B中,D.O分别为AB.AC1的中点,
所以DO//2/1BC1
又因为DO含于面A1DC .BC1不含于面A1DC ,
所以BC1//面A1DC