早教吧作业答案频道 -->数学-->
(2012•道里区三模)如图,在平面直角坐标系中,O为坐标原点,△ABC的边BC在y轴的正半轴上,点A在x轴的正半轴上,点C的坐标为(0,8),将△ABC沿直线AB折叠,点C落在x轴的负半轴D(-4,0
题目详情
(2012•道里区三模)如图,在平面直角坐标系中,O为坐标原点,△ABC的边BC在y轴的正半轴上,点A在x轴的正半轴上,点C的坐标为(0,8),将△ABC沿直线AB折叠,点C落在x轴的负半轴D(-4,0)处.
(1)求直线AB的解析式;
(2)点P从点A出发以每秒4
个单位长度的速度沿射线AB方向运动,过点P作PQ⊥AB,交x轴于点Q,PR∥AC交x轴于点R,设点P运动时间为t(秒),线段QR长为d,求d与t的函数关系式(不要求写出自变量t的取值范围);
(3)在(2)的条件下,点N是射线AB上一点,以点N为圆心,同时经过R、Q两点作⊙N,⊙N交y轴于点E,F.是否存在t,使得EF=RQ?若存在,求出t的值,并求出圆心N的坐标;若不存在,说明理由.
(1)求直线AB的解析式;
(2)点P从点A出发以每秒4
5 |
(3)在(2)的条件下,点N是射线AB上一点,以点N为圆心,同时经过R、Q两点作⊙N,⊙N交y轴于点E,F.是否存在t,使得EF=RQ?若存在,求出t的值,并求出圆心N的坐标;若不存在,说明理由.
▼优质解答
答案和解析
(1)∵C(0,8),D(-4,0),
∴OC=8,OD=4,
设OB=a,则BC=8-a,
由折叠的性质可得:BD=BC=8-a,
在Rt△BOD中,∠BOD=90°,DB2=OB2+OD2,
则(8-a)2=a2+42,
解得:a=3,
则OB=3,
则B(0,3),
tan∠ODB=
=
,
由折叠的性质得:∠ADB=∠ACB,
则tan∠ACB=tan∠ODB=
,
在Rt△AOC中,∠AOC=90°,tan∠ACB=
=
,
则OA=6,
则A(6,0),
设直线AB的解析式为:y=kx+b,
则
,
解得:
,
故直线AB的解析式为:y=-
x+3;
(2)在Rt△AOB中,∠AOB=90°,OB=3,OA=6,
则AB=
=3
∴OC=8,OD=4,
设OB=a,则BC=8-a,
由折叠的性质可得:BD=BC=8-a,
在Rt△BOD中,∠BOD=90°,DB2=OB2+OD2,
则(8-a)2=a2+42,
解得:a=3,
则OB=3,
则B(0,3),
tan∠ODB=
OB |
OD |
3 |
4 |
由折叠的性质得:∠ADB=∠ACB,
则tan∠ACB=tan∠ODB=
3 |
4 |
在Rt△AOC中,∠AOC=90°,tan∠ACB=
OA |
OC |
3 |
4 |
则OA=6,
则A(6,0),
设直线AB的解析式为:y=kx+b,
则
|
解得:
|
故直线AB的解析式为:y=-
1 |
2 |
(2)在Rt△AOB中,∠AOB=90°,OB=3,OA=6,
则AB=
OB2+OA2 |
作业帮用户
2017-10-23
|
看了 (2012•道里区三模)如图...的网友还看了以下:
如图,多边形ABCDEF的顶点坐标为A(-2,2)B(-2,-2),C(4,-2),D(4,0)E 2020-05-16 …
元素X与Y结合,分别形成分子式XY、XY2、X3Y4的三种化合物,在与固定质量的Y元素的化合反应中 2020-05-16 …
若将2千克、8℃的水烧开,用燃烧值为4.6×107J/kg的煤油作燃料,设煤油完全燃烧放出的内能有 2020-06-12 …
因式分解1/4x^2-y^2(2x+1)^2-(x-2)^2(m+n)^2-n^2169(a-b) 2020-07-18 …
已知A,B,C,D顺次为圆内接四边形的四个内角,求证:(1)cos((A+B)/4)=sin((C 2020-07-26 …
圆O:x^2+y^2=1,圆C:(x-4)^2+y^2=4,动圆P与圆O和圆C都外切,动圆圆形P的 2020-07-31 …
1.写出满足下列条件的直线的点斜式方程:(1)经过点A(3,-1),斜率为4;(2)经过点B(2, 2020-08-01 …
1+a四方小于等于2乘以b-c括号平方,1+b四方小于等于2乘以c-a括号平方,1+c四方小于等于2 2020-11-07 …
按兴盛的先后顺序排列中国古代画种()(1)风俗画(2)人物画(3)宗教画(4)山水花鸟画A、(2)( 2020-12-17 …
按兴盛的先后顺序排列中国古代画种()(1)风俗画(2)人物画(3)宗教画(4)山水花鸟画A、(2)( 2020-12-17 …