早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2005•武汉模拟)设椭圆x2a2+y2b2=1和x轴正方向的交点为A,和y轴的正方向的交点为B,P为第一象限内椭圆上的点,使四边形OAPB面积最大(O为原点),那么四边形OAPB面积最大值为()A.2a

题目详情
(2005•武汉模拟)设椭圆
x2
a2
+
y2
b2
=1和x轴正方向的交点为A,和y轴的正方向的交点为B,P为第一象限内椭圆上的点,使四边形OAPB面积最大(O为原点),那么四边形OAPB面积最大值为(  )
A.
2
ab
B.
2
2
ab
C.
1
2
ab
D. 2ab
▼优质解答
答案和解析
由于点P是椭圆
x2
a2
+
y2
b2
=1上的在第一象限内的点,
 设P为(acosa,bsina)即x=acosa y=bsina (0<a<
π
2
),
这样四边形OAPB的面积就可以表示为两个三角形OAP和OPB面积之和,
对于三角形OAP有面积S1=
1
2
absinα,对于三角形OBP有面积S2=
1
2
abcosα
∴四边形的面积S=S1+S2=
1
2
ab(sinα+cosα)
=
2
2
absin(a+
π
4

其最大值就应该为
2
2
ab,
并且当且仅当a=
π
4
时成立.所以,面积最大值
2
2
ab.
故选B.