早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知n次多项式f(x)=anxn+an-1xn-1+…+a1x+a0,用秦九韶算法求当x=x0时f(x0)的值,需要进行的乘法运算、加法运算的次数依次是()A.n,nB.2n,nC.n(n+1)2,nD.n+1,n+1

题目详情
已知n 次多项式f(x)=anxn+an-1xn-1+…+a1x+a0,用秦九韶算法求当x=x0时f(x0)的值,需要进行的乘法运算、加法运算的次数依次是(  )

A.n,n
B.2n,n
C.
n(n+1)
2
,n
D.n+1,n+1
▼优质解答
答案和解析
f(x)=anxn+an-1xn-1+…+a1x+a0=(anxn-1+an-1xn-2+…+a1)x+a0
=((anxn-2+an-1xn-3+…+a2)x+a1)x+a0
=…
=(…((anx+an-1)x+an-2)x+…+a1)x+a0
求多项式的值时,首先计算最内层括号内一次多项式的值,
即 v1=anx+an-1
然后由内向外逐层计算一次多项式的值,即 
v2=v1x+an-2
v3=v2x+an-3

vn=vn-1x+a1 
这样,求n次多项式f(x)的值就转化为求n个一次多项式的值.
∴对于一个n次多项式,至多做n次乘法和n次加法
故选A.