早教吧作业答案频道 -->其他-->
(2014•浦东新区二模)已知:如图,在正方形ABCD中,点E是边AD的中点,联结BE,过点A作AF⊥BE,分别交BE、CD于点H、F,联结BF.(1)求证:BE=BF;(2)联结BD,交AF于点O,联结OE.求证:∠AEB
题目详情
(2014•浦东新区二模)已知:如图,在正方形ABCD中,点E是边AD的中点,联结BE,过点A作AF⊥BE,分别交BE、CD于点H、F,联结BF.
(1)求证:BE=BF;
(2)联结BD,交AF于点O,联结OE.求证:∠AEB=∠DEO.
(1)求证:BE=BF;
(2)联结BD,交AF于点O,联结OE.求证:∠AEB=∠DEO.
▼优质解答
答案和解析
证明:(1)∵四边形ABCD是正方形,
∴AB=DA=BC=CD,∠BAD=∠ADF=∠BCF=90°,
∴∠BAH+∠HAE=90°,
∵AF⊥BE,
∴∠AHB=90°,
即∠BAH+∠ABH=90°,
∴∠ABH=∠HAE,
又∵∠BAE=∠ADF,
∴△ABE∽△DAF,
∴
=
,
∴AE=DF,
∵点E是边AD的中点,
∴点F是边DC的中点,
∴CF=AE,
在Rt△ABE与Rt△CBF中,
∴Rt△ABE≌Rt△CBF(HL),
∴BE=BF.
(2)∵四边形ABCD是正方形,
∴DB平分∠ADC,
∴∠ADB=∠CDB,
在△DEO与△DFO中,
∴△DEO≌△DFO(SAS),
∴∠DEO=∠DFO,
∵△ABE∽△DAF,
∴∠AEB=∠DFA,
∴∠AEB=∠DEO.
∴AB=DA=BC=CD,∠BAD=∠ADF=∠BCF=90°,
∴∠BAH+∠HAE=90°,
∵AF⊥BE,
∴∠AHB=90°,
即∠BAH+∠ABH=90°,
∴∠ABH=∠HAE,
又∵∠BAE=∠ADF,
∴△ABE∽△DAF,
∴
AB |
DA |
AE |
DF |
∴AE=DF,
∵点E是边AD的中点,
∴点F是边DC的中点,
∴CF=AE,
在Rt△ABE与Rt△CBF中,
|
∴Rt△ABE≌Rt△CBF(HL),
∴BE=BF.
(2)∵四边形ABCD是正方形,
∴DB平分∠ADC,
∴∠ADB=∠CDB,
在△DEO与△DFO中,
|
∴△DEO≌△DFO(SAS),
∴∠DEO=∠DFO,
∵△ABE∽△DAF,
∴∠AEB=∠DFA,
∴∠AEB=∠DEO.
看了 (2014•浦东新区二模)已...的网友还看了以下:
怎样证明两个离散型随机变量不相互独立随机变量X、Y的联合分布律如图.证明:X和Y不相关,但X和Y不 2020-04-05 …
已知a>0,b>0,求证;a+b分之2ab小于等于根号下ab小于等于2分之a+b小于等于根号下2分 2020-05-17 …
比例线段的简单问题.已知:a分之b=d分之c,求证:b分之(b-a)=d分之(d-c) 2020-05-21 …
《假币收缴凭证》为多联凭证,_______由收缴单位进行留底。A.第一联B.第二联C.第三联D.第四 2020-05-27 …
已知a>b>c求证a-b分之一加b-a分之一加a-c分之一大于0已知a>b>c求证:a-b分之一加 2020-07-14 …
减数分裂过程中,染色体的行为变化是()A.复制→分离→联会→分裂B.联会→复制→分离→分裂C.联会 2020-07-30 …
有三道,过程也要写上面.一.求证:小括号里2分之a+b整体的平方小于等于2分之a方加b方二.已知a 2020-08-01 …
下列说法不正确的是()A.综合法是由因导果的顺推证法B.分析法是执果索因的逆推证法C.分析法是从要 2020-08-01 …
已知a,b,c∈R+,求证:ab+bc+ca=3abc.求证ab/a+b+bc/b+c+ca/c+a 2020-11-03 …
根据有理数的经典定义求证:有理数的经典定义:能够表示成分数m分之n的形式(m,n均为整数,且m不等于 2020-11-11 …