早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知中心在原点O,焦点在x轴上的椭圆E过点(0,1),离心率为22.(I)求椭圆E的方程;(II)若直线l过椭圆E的左焦点F,且与椭圆E交于A、B两点,点A关于x轴的对称点为C,直线BC与x轴交于

题目详情
已知中心在原点O,焦点在x轴上的椭圆E过点(0,1),离心率为
2
2

(I)求椭圆E的方程;
(II)若直线l过椭圆E的左焦点F,且与椭圆E交于A、B两点,点A关于x轴的对称点为C,直线BC与x轴交于点M,当△MAF的面积为
1
2
,求△MAC的内切圆方程.
▼优质解答
答案和解析
(I)设椭圆E的方程为:
x2
a2
+
y2
b2
=1,(a>b>0)
∵椭圆E过点(0,1),离心率为
2
2

b=1
c
a
2
2
a2=b2+c2
,解得a2=2,b2=1,
∴椭圆E的方程为:
x2
2
+y2=1.
(II)设A(x1,y1),B(x2,y2),
∵点A关于x轴的对称点为C,∴C(x1,-y1),
设直线l的方程为y=k(x+1),
y=k(x+1)
x
首页    语文    数学    英语    物理    化学    历史    政治    生物    其他     
Copyright © 2019 zaojiaoba.cn All Rights Reserved 版权所有 作业搜 
本站资料来自网友投稿及互联网,如有侵犯你的权益,请联系我们:105754049@qq.com
湘ICP备12012010号