早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知中心在原点,焦点在x轴上的椭圆焦距为2,离心率为12(1)求椭圆的标准方程(2)若直线l过点(1,2)且倾斜角为45°且与椭圆相交于A,B两点,求弦长|AB|.

题目详情
已知中心在原点,焦点在x轴上的椭圆焦距为2,离心率为
1
2

(1)求椭圆的标准方程
(2)若直线l过点(1,2)且倾斜角为45°且与椭圆相交于A,B两点,求弦长|AB|.
▼优质解答
答案和解析
(1)∵焦点在x轴上的椭圆焦距为2,离心率为
1
2

∴c=1,
c
a
=
1
2

∴a=2,
∴b2=a2-c2=3,
∴所求椭圆方程为
x2
4
+
y2
3
=1;
(2)设A(x1,y1),B(x2,y2),则
∵直线l过点(1,2)且倾斜角为45°,
∴直线l的方程为y=x+1,
代入椭圆方程,消去y可得7x2+8x-8=0,
∴x1+x2=-
8
7
,x1x2=-
8
7

∴|x1-x2|=
(
8
7
)2+4•
8
7
=
12
2
7

因此,|AB|=
2
•|x1-x2|=
24
7