早教吧作业答案频道 -->数学-->
常看到Ep或者Ep(x,y,
题目详情
常看到Ep 或者 Ep(x,y,
▼优质解答
答案和解析
早在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,赢家可以获得100法郎的奖励.当比赛进行到第三局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平?用概率论的知识,不难得知,甲获胜的概率为1/2+(1/2)*(1/2)=3/4,或者分析乙获胜的概率为(1/2)*(1/2)=1/4.因此由此引出了甲的期望所得值为100*3/4=75法郎,乙的期望所得值为25法郎.这个故事里出现了“期望”这个词,数学期望由此而来.
离散型随机变量的一切可能的取值xi与对应的概率Pi(=xi)之积的和称为该离散型随机变量的数学期望(设级数绝对收敛),记为E(x).随机变量最基本的数学特征之一.它反映随机变量平均取值的大小.又称期望或均值.如果随机变量只取得有限个值,称之为离散型随机变量的数学期望.它是简单算术平均的一种推广,类似加权平均.例如某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个,则此城市中任一个家庭中孩子的数目是一个随机变量,记为X,它可取值0,1,2,3,其中取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03,它的数学期望为0×0.01+1×0.9+2×0.06+3×0.03等于1.11,即此城市一个家庭平均有小孩1.11个,用数学式子表示为:E(X)=1.11.
还想了解详细的请在百度百科中搜索 数学期望.
离散型随机变量的一切可能的取值xi与对应的概率Pi(=xi)之积的和称为该离散型随机变量的数学期望(设级数绝对收敛),记为E(x).随机变量最基本的数学特征之一.它反映随机变量平均取值的大小.又称期望或均值.如果随机变量只取得有限个值,称之为离散型随机变量的数学期望.它是简单算术平均的一种推广,类似加权平均.例如某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个,则此城市中任一个家庭中孩子的数目是一个随机变量,记为X,它可取值0,1,2,3,其中取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03,它的数学期望为0×0.01+1×0.9+2×0.06+3×0.03等于1.11,即此城市一个家庭平均有小孩1.11个,用数学式子表示为:E(X)=1.11.
还想了解详细的请在百度百科中搜索 数学期望.
看了 常看到Ep或者Ep(x,y,...的网友还看了以下:
matlab求微分方程,常数项比如y=dsolve("Du=((a-u-b)*e-u*d)/(e* 2020-05-14 …
把函数y=e^x的图像按向量a=(2,3)平移,得到y=f(x)的图像,则f(x)=?A.e^(x 2020-05-16 …
老师我看到好多题目里都有"不妨设..."但好多不妨设没有涵盖到所有可能性,但还是可以这样假设,为什 2020-05-16 …
设y=1+xe^y,求dy/dx我能做到y'=e^y/1-xe^y这一步,但答案是e^y/2-y 2020-05-17 …
设X Y 相互独立,且服从N(0,1)分布,试求E(根号(X^2+Y^2)) 答案说是E((X^2 2020-05-17 …
协方差cov(X+20,Y+10)=cov(X,知道了COV(X+a,Y+b)=E[(X+a)(Y 2020-06-17 …
y=f(x)与y=f(-x)关于什么对称如果关于y轴对称那为什么我又看到y=-f(x-1)图像与y 2020-06-20 …
对y=e^x,微分算子d/dy进行微分看到一则笑话,没看懂(小弟我才刚上高中),很想搞清为什么…… 2020-08-02 …
求函数y=(e^x-1)/(e^x+1)的值域?!~网上某个人的回答e^x-1=y(e^x+1)e^ 2020-10-31 …
关于多元函数应用的问题设u=f(x,y,z),v(x^2,e^y,z)=0,y=sinx,z=z(x 2020-12-14 …