早教吧 育儿知识 作业答案 考试题库 百科 知识分享

我们知道,任意一个正整数n都可以进行这样的分n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=pq.

题目详情
我们知道,任意一个正整数n都可以进行这样的分 n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=
p
q
.例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所有3×4是12的最佳分解,所以F(12)=
3
4

(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;
(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.
▼优质解答
答案和解析
(1)对任意一个完全平方数m,设m=n2(n为正整数),
∵|n-n|=0,
∴n×n是m的最佳分解,
∴对任意一个完全平方数m,总有F(m)=
n
n
=1;

(2)设交换t的个位上的数与十位上的数得到的新数为t′,则t′=10y+x,
∵t为“吉祥数”,
∴t′-t=(10y+x)-(10x+y)=9(y-x)=18,
∴y=x+2,
∵1≤x≤y≤9,x,y为自然数,
∴“吉祥数”有:13,24,35,46,57,68,79,
∴F(13)=
1
13
,F(24)=
4
6
=
2
3
,F(35)=
5
7
,F(46)=
2
23
,F(57)=
3
19
,F(68)=
4
17
,F(79)=
1
79

5
7
>
2
3
>
4
17
>
3
19
>
2
23
>
1
13
>
1
79

∴所有“吉祥数”中,F(t)的最大值是
5
7