早教吧作业答案频道 -->数学-->
求满足abc=(a+b+c)^3的所有三位数abc.
题目详情
求满足abc=(a+b+c)^3 的所有三位数abc .
▼优质解答
答案和解析
10的3次方就是1000了 超过了3位数.4的3次方才64.
所以
a+b+c=5或者6或者7或者8或者9啦
5的3次方=125 1+2+5=8 不符合.
6的3次方=216 2+1+6=9 不符合
7的3次方 =343 3+4+3=10 不符合
8的3次方=512 5+1+2=8 符合
9的3次方=729 7+2+9=18不符合.
就只有一个咯 512
所以
a+b+c=5或者6或者7或者8或者9啦
5的3次方=125 1+2+5=8 不符合.
6的3次方=216 2+1+6=9 不符合
7的3次方 =343 3+4+3=10 不符合
8的3次方=512 5+1+2=8 符合
9的3次方=729 7+2+9=18不符合.
就只有一个咯 512
看了 求满足abc=(a+b+c)...的网友还看了以下:
设a=(√5-1)/2,求(a^5+a^4-2a^3-a^2-a+2)/a^3-a∵2a=√5-1 2020-04-05 …
求线性代数一道题,已知3维列向量α,β满足α^Tβ=3,设三阶矩阵A=βα^T,则Aβ为满足A的特 2020-04-13 …
一、已知数集M满足条件:若a∈M,则(1+a)/(1-a)∈M(a≠0,a≠±1)(1)若3∈M, 2020-07-30 …
高中数学题目请指教```1.设a>b>0,求证a^a>(ab)^a+b/22.若α、β∈[0,л] 2020-08-01 …
已知复数ω满足ω-4=(3-2ω)i(i为虚数单位),z=5/ω+|z-2|,若z的平方根为a=b 2020-08-02 …
已知a、b、c满足a<b<c,ab+bc+ac=0,abc=1,则()A.|a+b|>|c|B.|a 2020-11-01 …
设a、b、c是空间三条不同的直线,且满足a∥b,b⊥c,则a与c的位置关系一定是()A.a与c异面B 2020-11-02 …
设A是阶矩阵,且满足A^3=2E,矩阵B=A^2-2A+4E求证B可逆,并且求出B^-1当A^3=6 2020-11-03 …
观看足球比赛时,坐在不同方向看台上的众多球迷都能看到飞向球门的足球,这是因为()A.足球是个发光体B 2021-01-09 …
函数f[x]=logaXa大于0,且a不等于1,在2,3上最大值为1,则a=当a大于1时,f(x)图 2021-01-15 …