早教吧作业答案频道 -->数学-->
解一道贝努利方程y'+y=y^4(cosx-sinx)看不清楚,能发个大点的吗?
题目详情
解一道贝努利方程
y'+y=y^4(cosx-sinx)
看不清楚,能发个大点的吗?
y'+y=y^4(cosx-sinx)
看不清楚,能发个大点的吗?
▼优质解答
答案和解析
y'+y=y^4(cosx-sinx)
y'/y^4+y/y^4=cosx-sinx
(-1/3)d(1/y^3)/dx+(1/y^3)=cosx-sinx
d(1/y^3)/dx-3(1/y^3)=3(sinx-cosx)
d(1/y^3)/dx-3(1/y^3)=0
1/y^3=Ce^3x
设方程通解(1/y^3)=C(x)e^3x
C'(x)e^3x=3(sinx-cosx)
C'(x)=3√2sin(x-π/4)e^(-3x)
C(x)=(-9√2/10)e^(-3x)[sin(x-π/4)+(1/3)cos(x-π/4)]+C
通解为1/y^3=(-9√2/10)*[sin(x-π/4)+(1/3)cos(x-π/4)]+Ce^3x
∫sin(x-π/4)e^(-3x)dx=(-1/3)∫sin(x-π/4)de^(-x)=(-1/3)e^(-3x)sin(x-π/4)+(1/3)∫e^(-3x)cos(x-π/4)dx
=(-1/3)e^(-3x)sin(x-π/4)-(1/9)∫cos(x-π/4)de^(-3x)
=(-1/3)e^(-3x)sin(x-π/4)+(-1/9)e^(-3x)cos(x-π/4)-(1/9)∫e^(-3x)sin(x-π/4)dx+C1
(10/9)∫sin(x-π/4)e^(-3x)dx=(-1/3)e^(-x)*[-sin(x-π/4)-(1/3)cos(x-π/4)]+C1
∫sin(x-π/4)e^(-x)dx=(-3/10)e^(-x) *[sin(x-π/4)+(1/3)cos(x-π/4)]+C
y'/y^4+y/y^4=cosx-sinx
(-1/3)d(1/y^3)/dx+(1/y^3)=cosx-sinx
d(1/y^3)/dx-3(1/y^3)=3(sinx-cosx)
d(1/y^3)/dx-3(1/y^3)=0
1/y^3=Ce^3x
设方程通解(1/y^3)=C(x)e^3x
C'(x)e^3x=3(sinx-cosx)
C'(x)=3√2sin(x-π/4)e^(-3x)
C(x)=(-9√2/10)e^(-3x)[sin(x-π/4)+(1/3)cos(x-π/4)]+C
通解为1/y^3=(-9√2/10)*[sin(x-π/4)+(1/3)cos(x-π/4)]+Ce^3x
∫sin(x-π/4)e^(-3x)dx=(-1/3)∫sin(x-π/4)de^(-x)=(-1/3)e^(-3x)sin(x-π/4)+(1/3)∫e^(-3x)cos(x-π/4)dx
=(-1/3)e^(-3x)sin(x-π/4)-(1/9)∫cos(x-π/4)de^(-3x)
=(-1/3)e^(-3x)sin(x-π/4)+(-1/9)e^(-3x)cos(x-π/4)-(1/9)∫e^(-3x)sin(x-π/4)dx+C1
(10/9)∫sin(x-π/4)e^(-3x)dx=(-1/3)e^(-x)*[-sin(x-π/4)-(1/3)cos(x-π/4)]+C1
∫sin(x-π/4)e^(-x)dx=(-3/10)e^(-x) *[sin(x-π/4)+(1/3)cos(x-π/4)]+C
看了 解一道贝努利方程y'+y=y...的网友还看了以下:
求下列微分方程满足所给初始条件的特解:dy/dx+y/x=sinx/x,yⅠ(x=派) =1.即求 2020-05-17 …
几何画板画y=sinx与y=sin2x的图象我在几何画板中画出了y=sinx的图象,怎么再利用si 2020-05-23 …
已知0≤x≤2π,求适合下列条件的角x的集合(题目内详)y=sinx和y=cosx都是增函数;y= 2020-06-03 …
解方程sinx=3sinyx+y=120° 2020-06-06 …
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y′(x)≠0,x=x(y)是y=y(x)的反 2020-06-12 …
请教一个三角函数的问题:求y=cot(sinx)定义域求y=cot(sinx)和y=根号下cot( 2020-06-13 …
方程y^sinx=〖(sinx)〗^y确定y是x的函数,求yx^'.跪谢 2020-07-07 …
下面四个函数y=sin|x|,y=|sinx|,y=|sinx+1|,y=sin(-x)中,它们的 2020-08-02 …
求y=1/1+sinx的定义域第一种(1+sinX)≠0;故sinX≠—1;故sinX≠Kπ—2/π 2020-11-19 …
可分离变量的微分方程sinx*cosxdy-y*lnydx=0的通解是?[c*e(tanx) 2021-02-12 …