早教吧作业答案频道 -->数学-->
f(x+y)=e^yf(x)+e^xf(y);f'(0)=2;求f(x)
题目详情
f(x+y)=e^yf(x)+e^xf(y);f'(0)=2;求f(x)
▼优质解答
答案和解析
两边同时除以e^(x+y)得
f(x+y)/e^(x+y)=f(x)/e^x+f(y)/e^y
所以令f(x)/e^x=g(x),上式变成g(x+y)=g(x)+g(y).容易知道g(0)=0
题目已知f'(0)=2.
又f'(x)=(g(x)+g'(x))e^x,故得g(0)+g'(0)=2,g'(0)=2
g'(x)=lim(g(t+x)-g(x))/t=limg(t)/t=lim(g(t)-g(0))/(t-0)=g'(0)=2
所以g(x)=2x+g(0)=2x
f(x)=2xe^x
f(x+y)/e^(x+y)=f(x)/e^x+f(y)/e^y
所以令f(x)/e^x=g(x),上式变成g(x+y)=g(x)+g(y).容易知道g(0)=0
题目已知f'(0)=2.
又f'(x)=(g(x)+g'(x))e^x,故得g(0)+g'(0)=2,g'(0)=2
g'(x)=lim(g(t+x)-g(x))/t=limg(t)/t=lim(g(t)-g(0))/(t-0)=g'(0)=2
所以g(x)=2x+g(0)=2x
f(x)=2xe^x
看了 f(x+y)=e^yf(x)...的网友还看了以下:
一道函数证明题..若函数f(x,y)对任意正实数t满足f(tx,ty)=f(x,y)乘以t的n次方 2020-05-13 …
若函数f(x,y)对任意正实数t满足f(tx,ty)=f(x,y)乘以t的n次方,就称f(x,y) 2020-05-13 …
已知f(x)是定义在(0,+∞)上的函数,且有①对x∈(0,+∞),y∈R,总有f(x^y)=yf 2020-06-07 …
大一高数设函数f:定义域(0,正无穷)在x=1处可导,且f(xy)=yf(x)+xf(y),对任意 2020-06-11 …
设f(x),g(x)为连续可微函数,且w=yf(xy)dx+xg(xy)dy(1)若存在u使得du 2020-07-07 …
已知函数f(x)可导,且对任何实数x,y满足:f(x+y)=e^xf(y)+e^yf(x)和f'( 2020-07-16 …
设s表示所有大于-1的实数所组成的集合,确定所有函数f:s到s(箭头打不出,用"到"表示)满足以下 2020-07-20 …
一道离散数学题使一阶逻辑公式VxヨyF(x,y)→ヨxVyF(x,y)为真的解释是()A.个体域为 2020-07-30 …
试求出所有的函数f:R→R,使得对于任何的x,y∈R,都有f(x^2+y^2)=xf(x)+yf(y 2020-10-31 …
设f是定义在正整数有序对的集合上,满足f(x,x)=x,f(x,y)=f(y,x),(X+y)f(x 2020-12-05 …