早教吧作业答案频道 -->数学-->
如图.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,分别于BC、CD交于E、F,EH⊥AB于H.连接FH,求证:四边形CFHE是菱形.
题目详情
如图.在△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,分别于BC、CD交于E、F,EH⊥AB于H.连接FH,求证:四边形CFHE是菱形.
▼优质解答
答案和解析
证明:∵∠ACB=90°,AE平分∠BAC,EH⊥AB,
∴CE=EH,
在Rt△ACE和Rt△AHE中,AE=AE,CE=EH,由勾股定理得:AC=AH,
∵AE平分∠CAB,
∴∠CAF=∠HAF,
在△CAF和△HAF中
∴△CAF≌△HAF(SAS),
∴∠ACD=∠AHF,
∵CD⊥AB,∠ACB=90°,
∴∠CDA=∠ACB=90°,
∴∠B+∠CAB=90°,∠CAB+∠ACD=90°,
∴∠ACD=∠B=∠AHF,
∴FH∥CE,
∵CD⊥AB,EH⊥AB,
∴CF∥EH,
∴四边形CFHE是平行四边形,
∵CE=EH,
∴四边形CFHE是菱形.
∴CE=EH,
在Rt△ACE和Rt△AHE中,AE=AE,CE=EH,由勾股定理得:AC=AH,
∵AE平分∠CAB,
∴∠CAF=∠HAF,
在△CAF和△HAF中
|
∴△CAF≌△HAF(SAS),
∴∠ACD=∠AHF,
∵CD⊥AB,∠ACB=90°,
∴∠CDA=∠ACB=90°,
∴∠B+∠CAB=90°,∠CAB+∠ACD=90°,
∴∠ACD=∠B=∠AHF,
∴FH∥CE,
∵CD⊥AB,EH⊥AB,
∴CF∥EH,
∴四边形CFHE是平行四边形,
∵CE=EH,
∴四边形CFHE是菱形.
看了 如图.在△ABC中,∠ACB...的网友还看了以下:
设a=(√5-1)/2,求(a^5+a^4-2a^3-a^2-a+2)/a^3-a∵2a=√5-1 2020-04-05 …
以下各正方形的边长是无理数的是a面积为25的正方形b面积为16的正方形c面积为8的正方形d以下各正 2020-04-27 …
线性代数证明题27.设A是m×n实矩阵,n<m,且线性方程组Ax=b有惟一解.证明ATA是可逆矩阵 2020-05-14 …
线性代数题:设A为n阶方阵,A*是A的伴随矩阵,如果/A/=a≠0,则/A*/=()设A为n阶方阵 2020-05-15 …
在三角形A.B.C所对边的边长分别是a,b,c.已知c=2,C=兀/3.(1)若三角形ABC的面积 2020-05-15 …
a是不为1的有理数,我们把(1-a)分之1称为a的差倒数.如:2的差倒数是(1-2)分之1=-1, 2020-05-16 …
点P是矩形ABCD的边AD上的一个动点,矩形的两条边长AB、BC分别为8和15,求点P到矩形的两条 2020-05-20 …
正方形边长是a,六个叠在一起组成的图形,周长是多少?如果100个这样的正方形叠在六个正方形重叠着放 2020-06-03 …
如图,B、A是某海面上位于东西方向相距302海里的两个观测点.现位于B点正北方向、A点北偏东45° 2020-06-12 …
1.一个三角形中,内角小于90度的角至少有A.1个B.2个C.3个D.0个2.满足条件∠A=∠B= 2020-06-12 …