早教吧作业答案频道 -->数学-->
如图,正方形ABCD边长为6,菱形EFGH的三个顶点E,G,H分别在正方形ABCD的边AB,CD,2014-06-14知******|初中数学如图,正方形ABCD边长为6,菱形EFGH的三个顶点E,G,H分别在正方形ABCD的边AB,CD,DA上,且AH=2,连接CF,!(1
题目详情
如图,正方形ABCD边长为6,菱形EFGH的三个顶点E,G,H分别在正方形ABCD的边AB,CD,
2014-06-14 知******| 初中数学
如图,正方形ABCD边长为6,菱形EFGH的三个顶点E,G,H分别在正方形ABCD的边AB,CD,DA上,且AH=2,连接CF,!
(1)当DG=2时,求证:菱形EFGH为正方形;
(2)设DG=x,试用含x的代表式表示△FCG的面积;
2014-06-14 知******| 初中数学
如图,正方形ABCD边长为6,菱形EFGH的三个顶点E,G,H分别在正方形ABCD的边AB,CD,DA上,且AH=2,连接CF,!
(1)当DG=2时,求证:菱形EFGH为正方形;
(2)设DG=x,试用含x的代表式表示△FCG的面积;
▼优质解答
答案和解析
(1)∵正方形ABCD中,AH=2,
∴DH=4,
∵DG=2,
∴HG=2
5
,即菱形EFGH的边长为2
5
.
在△AHE和△DGH中,
∵∠A=∠D=90°,AH=DG=2,EH=HG=2
5
,
∴△AHE≌△DGH(HL),
∴∠AHE=∠DGH,
∵∠DGH+∠DHG=90°,
∴∠DHG+∠AHE=90°,
∴∠GHE=90°,即菱形EFGH是正方形,
同理可以证明△DGH≌△CFG,
∴∠FCG=90°,即点F在BC边上,同时可得CF=2,
从而S△FCG=
1
2
×4×2=4.(2分)
(2)作FM⊥DC,M为垂足,连接GE,
∵AB∥CD,
∴∠AEG=∠MGE,
∵HE∥GF,
∴∠HEG=∠FGE,
∴∠AEH=∠MGF.
在△AHE和△MFG中,
∠A=∠M
∠AEH=∠FGM
HE=FG
∴△AHE≌△MFG(AAS),
∴FM=HA=2,
即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2.
因此S△FCG=
1
2
×2×(6-x)=6-x.(6分)
(1)∵正方形ABCD中,AH=2,
∴DH=4,
∵DG=2,
∴HG=2
5
,即菱形EFGH的边长为2
5
.
在△AHE和△DGH中,
∵∠A=∠D=90°,AH=DG=2,EH=HG=2
5
,
∴△AHE≌△DGH(HL),
∴∠AHE=∠DGH,
∵∠DGH+∠DHG=90°,
∴∠DHG+∠AHE=90°,
∴∠GHE=90°,即菱形EFGH是正方形,
同理可以证明△DGH≌△CFG,
∴∠FCG=90°,即点F在BC边上,同时可得CF=2,
从而S△FCG=
1
2
×4×2=4.(2分)
(2)作FM⊥DC,M为垂足,连接GE,
∵AB∥CD,
∴∠AEG=∠MGE,
∵HE∥GF,
∴∠HEG=∠FGE,
∴∠AEH=∠MGF.
在△AHE和△MFG中,
∠A=∠M
∠AEH=∠FGM
HE=FG
∴△AHE≌△MFG(AAS),
∴FM=HA=2,
即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2.
因此S△FCG=
1
2
×2×(6-x)=6-x.(6分)
看了 如图,正方形ABCD边长为6...的网友还看了以下:
已知F,G,g,m,TF=mg=GMm/R二次方GMm/R二次方=4π平方mR/T平方请用字母表示 2020-04-26 …
已知函数f(x)=2sinxcosx+2cos平方x(x属于R)(1)术f(x)的最小正周期,并求 2020-05-15 …
设f(x)=ex次方-e-x次方,g(x)=ex次方+e-x次方设f(x)=(ex次方-e-x次方 2020-05-17 …
已知函数f(x)=x2-2ax+a(第一个x后的2是平方),g(x)=f(x)\x,问若g(x)是 2020-06-05 …
f(3)=4,g(3)=2,f`(3)=-5,g`(3)=6那么(f+g)`(3)=?(fg)`( 2020-07-09 …
我们约定将64=2的六次方表示成f(64)=6,243=3的五次方表示成g(243)=5,根据这一 2020-07-19 …
直升机沿竖直方向匀速升空时,在竖直方向上受到升力F、重力G和阻力f,下面关于这三个力的关系式正确的 2020-07-22 …
三元一次方程组a*x+b*y+c*z+d=0,e*x+f*y+g*z+h=0,i*x+j*y+k* 2020-08-03 …
(2014•北海模拟)已知定义在R上的奇函数f(x),当x>0时,f(x)=2|x−1|−1,0<x 2020-11-13 …
求解这四个函数的solidworks方程式驱动曲线f(x)=-8/9x^2D(f)=[-3,3]h( 2020-12-08 …