早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知a、b、c分别是△ABC的三边,且m为a边上的中线,关于x的方程b^2x^2+4cmx+(2m-a)^2=2a(a+c-2m)x①求证:方程总有两个实数根;②若这两个实数根相等,求证△ABC是直角三角形的,关于根与系数的关系

题目详情
已知a、b、c分别是△ABC的三边,且m为a边上的中线,关于x 的方程b^2x^2+4cmx+(2m-a)^2=2a(a+c-2m)x
①求证:方程总有两个实数根;②若这两个实数根相等,求证△ABC是直角三角形
的,关于根与系数的关系
▼优质解答
答案和解析
方程b^2x^2+4cmx+(2m-a)^2=2a(a+c-2m)x可化为:
b^2x^2+(4cm-2a^2-2ac+4am)x+(2m-a)^2=0
b^2x^2+(4m-2a)(a+c)x+(2m-a)^2=0.由题知:2m>a,所以2m-a>0,(2m-a)^2>0,令K=2m-a,则B^2-4AC=4K^2(a+c)^2-4K^2b^2=4K^2〔(a+c)^2-b^2〕,因为K^2>0,所以4K^2>0,(a+c)^2-b^2=(a+c+b)(a+c-b),因为a+c+b>0,a+c-b>0,所以(a+c+b)(a+c-b)>0,所以4K^2〔(a+c)^2-b^2〕>0,所以B^2-4AC>0,所以方程总有两个实数根
若这两个实数根相等,则B^2-4AC=0,即4K^2〔(a+c)^2-b^2〕=0,(2m-a)^2(a+c+b)(a+c-b)=0,因为(a+c+b)(a+c-b)>0,所以(2m-a)^2=0,2m-a=0,2m=a,令线段m为AD,则BD=DC=AD,所以∠ABD=∠BAD,∠C=∠DAC,又因为∠ABD+∠BAD+∠C+∠DAC=180°所以∠BAD+∠DAC=∠ABD+∠C=180°/2=90°,∠BAD+∠DAC=∠BAC=90°,所以△ABC是直角三角形