早教吧作业答案频道 -->数学-->
若a^2*(b-c)+b^2*(c-a)+c^2*(a-b)=0,求证:a、b、c三数中至少有两个数相等
题目详情
若a^2*(b-c)+b^2*(c-a)+c^2*(a-b)=0,求证:a、b、c三数中至少有两个数相等
▼优质解答
答案和解析
若a^2*(b-c)+b^2*(c-a)+c^2*(a-b)=0,求证:a、b、c三数中至少有两个数相等
答案是这样地:
(a^2)*(b-c)+(b^2)(c-a)+(c^2)(a-b)
=a^2b-a^2c+b^2c-b^2a+c^2a-c^2b
=ab(a-b)+bc(b-c)+ac(c-a)
=b(a^2-ab+cb-c^2)+ac(c-a)
=b[(a+c)(a-c)-b(a-c)]+ac(c-a)
=b(a-c)(a+b-c)-ac(a-c)
=(a-c)(ab+b^2-bc-ac)
=(a-c)(a-b)(b-c)=0
所以说a-c=0或a-b=0或b-c=0
即:a,b,c三个数中至少有两个数相等.
答案是这样地:
(a^2)*(b-c)+(b^2)(c-a)+(c^2)(a-b)
=a^2b-a^2c+b^2c-b^2a+c^2a-c^2b
=ab(a-b)+bc(b-c)+ac(c-a)
=b(a^2-ab+cb-c^2)+ac(c-a)
=b[(a+c)(a-c)-b(a-c)]+ac(c-a)
=b(a-c)(a+b-c)-ac(a-c)
=(a-c)(ab+b^2-bc-ac)
=(a-c)(a-b)(b-c)=0
所以说a-c=0或a-b=0或b-c=0
即:a,b,c三个数中至少有两个数相等.
看了 若a^2*(b-c)+b^2...的网友还看了以下:
1.用描述法表示一元二次方程的全体,应是 ( )A.{x|ax2+bx+c=0,a,b,c∈R}; 2020-05-16 …
求救~方程ax^2+bx+c=0(a≠0)有一非零根x1,方程-ax^2+bx+c=0有一非零根x 2020-05-16 …
已知命题p:"如果函数y=f(x)在(a,b)内可导,在[a,b]上连续(图像不间断),且f(a) 2020-06-04 …
已知:0°C时等于32°F,100°C时等于212°F.求20°C时等于多少°F,90°F等于多少 2020-06-12 …
已知0.1mol/L的醋酸溶液中存在电离平衡:CH3COOH⇌CH3COO-+H+,要使溶液中c( 2020-06-27 …
如果圆x2+y2+ax+by+c=0(abc不全为零)与y轴相切于原点,那么()A.a=0,b≠0 2020-07-20 …
若圆x^2+y^2+ax+by-c=0,(a,b,c不全为0)与x轴相切于原点则Aa=0,b≠0, 2020-07-20 …
二项式系数c(0,n).c(1,n).c…c(n,n)中存在连续的三项成等差数列,公差为正的前四组 2020-08-03 …
f(x)在[0,1]上二阶可微且f'(0)=f'(1)=0,则存在c,使得f''(c)≥4|f(1) 2020-11-03 …
△=0,△<0时一元二次方程ax2+bx+c=0(a>0)的根根需要用字母代表出来△>0,△=0,△ 2020-12-27 …