早教吧作业答案频道 -->数学-->
求救~方程ax^2+bx+c=0(a≠0)有一非零根x1,方程-ax^2+bx+c=0有一非零根x2,求证:方程a/2x方程ax^2+bx+c=0(a≠0)有一非零根x1,方程-ax^2+bx+c=0有一非零根x2,求证:方程(a/2)x^2+bx+c=0必有一根介于x1、x2之间.
题目详情
求救~方程ax^2+bx+c=0(a≠0)有一非零根x1,方程-ax^2+bx+c=0有一非零根x2,求证:方程a/2x
方程ax^2+bx+c=0(a≠0)有一非零根x1,方程-ax^2+bx+c=0有一非零根x2,求证:方程(a/2)x^2+bx+c=0必有一根介于x1、x2之间.
方程ax^2+bx+c=0(a≠0)有一非零根x1,方程-ax^2+bx+c=0有一非零根x2,求证:方程(a/2)x^2+bx+c=0必有一根介于x1、x2之间.
▼优质解答
答案和解析
证明:因为 ax1^2+bx1+c=0 ,所以(a/2)x1^2+bx1+c=-(a/2)x1^2
又因为 -ax2^2+bx2+c=0 ,所以(a/2)x2^2+bx2+c=(3a/2)x2^2 ,设f(x)=ax^2+bx+c则:[(a/2)x1^2+bx1+c][(a/2)x2^2+bx2+c]=-(3a^2/4)(x1x2)^2<0
所以方程(a/2)x^2+bx+c=0必有一根介于x1、x2之间.
又因为 -ax2^2+bx2+c=0 ,所以(a/2)x2^2+bx2+c=(3a/2)x2^2 ,设f(x)=ax^2+bx+c则:[(a/2)x1^2+bx1+c][(a/2)x2^2+bx2+c]=-(3a^2/4)(x1x2)^2<0
所以方程(a/2)x^2+bx+c=0必有一根介于x1、x2之间.
看了 求救~方程ax^2+bx+c...的网友还看了以下:
已知函数f(x)=2∧x-a╱2∧x+1(a>-1)1.当a=2时,证明f(x)不是奇函数2.判断函 2020-03-31 …
若集合A={x|x+2x−3≤0},B={x|x2-3x-4≤0},则A∩(CRB)等于()A.{ 2020-05-13 …
设a>0,f(x)=e^x/a+a/e^x是R上的偶函数,求a值.∵f(x)=e^x/a+a/e^ 2020-05-17 …
(2010•崇明县二模)已知函数f(x)=a−1|x|.(1)求证:函数y=f(x)在(0,+∞) 2020-05-17 …
41人参加劳动,有30根扁担,要安排多少人抬,多少人挑,才可使扁担和人数相配不多不少?若设有x人挑 2020-06-03 …
已知函数f(x)为奇函数,x>0时为增函数且f(2)=0,则{x|f(x-2)>0}=()A.{x 2020-06-09 …
导数相关的题.1.当K取何值时,分段函数:x不等于0时,f(x)=x的k次方乘以sin(1/x), 2020-06-11 …
关于二次函数的2小题··1.某校组织篮球比赛,参赛的每两队之间都要比赛一场,现全校共有x支球队参赛 2020-06-20 …
设f(x)=|x(1-x)|,则()A.x=0是f(x)的极值点,但(0,0)不是曲线y=f(x) 2020-06-30 …
求函数的驻点f'x(x,y)=2xy(4-x-y)-x^2y=0.(1)其中f'x(x,y)中左边 2020-07-11 …