已知F1,F2分别为双曲线C:x2a2-y2b2=1的左、右焦点,若存在过F1的直线分别交双曲线C的左、右支于A,B两点,使得∠BAF2=∠BF2F1,则双曲线C的离心率e的取值范围是()A.(3,+∞)B.(1,
已知F1,F2分别为双曲线C:
-x2 a2
=1的左、右焦点,若存在过F1的直线分别交双曲线C的左、右支于A,B两点,使得∠BAF2=∠BF2F1,则双曲线C的离心率e的取值范围是( )y2 b2
A. (3,+∞)
B. (1,2+
)5
C. (3,2+
)5
D. (1,3)
由∠BAF2=∠BF2F1,∠ABF2=∠F2BF1,
可得△BAF2∽△BF2F1,
即有
BF2 |
BF1 |
BA |
BF2 |
F2A |
F1F2 |
即为
BF2-BA |
BF1-BF2 |
BF2-BA |
2a |
F2A |
2c |
AF2 |
BF2-BA |
c |
a |
可得AF2=e(BF2-BA)>c+a,即有BF2>BA,
又BA>2a,
即BF2>2a,
BF2取最小值c-a时,BF2也要大于BA,
可得2a<c-a,即c>3a,
即有e=
c |
a |
当AF1与x轴重合,即有
c+a |
c-3a |
c |
a |
e=
c |
a |
5 |
即有3<e<2+
5 |
故选:C.
已知双曲线-=1(a>0b>0)的左、右顶点分别为A、B,右焦点为F(c0)(c>0),右准线为l 2020-04-08 …
一道数学微分方程的题假设:(1)函数y=f(x)(0≤x<+∞)满足条件f(0)=0和0≤f(x) 2020-05-13 …
若曲线C上的点到直线的距离比它到点F的距离大1,(1)求曲线C的方程。(2)过点F(1,0)作倾斜 2020-05-15 …
已知函数f(x)=alnx/(x+1)+b/x,曲线y=f(x)在点(1,f(1))处的切线方程为 2020-05-17 …
微分方程应用题设M(x,y)(X>0)是曲线y=f(x)(f(x)>0)上的任意点,若曲线y=f( 2020-06-12 …
设f(x)是偶函数.若曲线y=f(x)在点(1,f(1))处的切线的斜率为1,则:设f(x)是偶函 2020-07-08 …
已知抛物线的焦点F与双曲线的一个焦点相同,且F到双曲线的右顶点的距离等于1,已知抛物线y^2=8x 2020-07-13 …
已知曲线C上的动点P(x,y)满足到点F(0,1)的距离比到直线y=-2的距离小1.(1)求曲线C 2020-07-20 …
已知函数f(x)=(x2-a+1)ex,g(x)=(x2-2)ex+2.(1)若曲线y=f(x)在 2020-07-27 …
曲线y=f(x)≥0(x≥0)围成一以[0,x]为底的曲边梯形,其面积与f(x)的4次幂...曲线y 2020-10-30 …