早教吧作业答案频道 -->其他-->
在下面的加法坚式中,不同的汉字可以代表相同的数字,那么满足要求的不同算式共有多少种?
题目详情
在下面的加法坚式中,不同的汉字可以代表相同的数字,那么满足要求的不同算式共有多少种?
▼优质解答
答案和解析
由竖式可得:“华”=1;
因为加法坚式中,不同的汉字可以代表相同的数字;
所以,个位上的“月”+“日”+“赛”的和是21、11或1;
个位上的“月”+“日”+“赛”的和是21,向十位上进2;
十位上4+6+“决”+2的末尾是1,由4+6+9+2=21,可得“决”=9,向百位上进2;
百位上1+“杯”+2的末尾是0,由1+7+2=10,可得“杯”=7,向千位上进1;
千位上1+1正好是2;
由以上可得,只要个位上的和是21,“华”、“杯”、“决”是固定的数;
同理个位上的“月”+“日”+“赛”的和是11,可得,“华”=1、“杯”=9、“决”=0,也是固定的数;
个位上的“月”+“日”+“赛”的和是1,可得,“华”=1、“杯”=9、“决”=1,也是固定的数;
因此“月”、“日”、“赛”决定不同的算式;
①“月”+“日”+“赛”=21;
7+7+7=21,可得1种;
6+7+8=21,可得6种;
6+6+9=21,可得3种;
5+8+8=21,可得3种;
5+7+9=21,可得6种;
4+8+9=21,可得6种;
3+9+9=21,可得3种;
那么月”+“日”+“赛”的和是21,可以得到1+6+3+3+6+6+3=28种不同算式;
②“月”+“日”+“赛”=21;
2+0+9=11,可得6种;
3+0+8=11,可得6种;
4+0+7=11,可得6种;
5+0+6=21,可得6种;
1+1+9=11,可得3种;
2+1+8=11,可得6种;
3+1+7=11,可得6种;
4+1+6=11,可得6种;
5+1+5=11,可得3种;
2+2+7=11,可得3种;
3+2+6=11,可得6种;
4+2+5=11,可得6种;
3+3+5=11,可得3种;
4+3+4=11,可得3种;
那么月”+“日”+“赛”的和是11,可以得到6+6+6+6+3+6+6+6+3+3+6+6+3+3=69种不同算式;
③“月”+“日”+“赛”=1;
0+0+1=1,可得3种;
那么月”+“日”+“赛”的和是1,可以得到3种不同算式;
综上可得:一共有28+69+3=100种不同算式.
因为加法坚式中,不同的汉字可以代表相同的数字;
所以,个位上的“月”+“日”+“赛”的和是21、11或1;
个位上的“月”+“日”+“赛”的和是21,向十位上进2;
十位上4+6+“决”+2的末尾是1,由4+6+9+2=21,可得“决”=9,向百位上进2;
百位上1+“杯”+2的末尾是0,由1+7+2=10,可得“杯”=7,向千位上进1;
千位上1+1正好是2;
由以上可得,只要个位上的和是21,“华”、“杯”、“决”是固定的数;
同理个位上的“月”+“日”+“赛”的和是11,可得,“华”=1、“杯”=9、“决”=0,也是固定的数;
个位上的“月”+“日”+“赛”的和是1,可得,“华”=1、“杯”=9、“决”=1,也是固定的数;
因此“月”、“日”、“赛”决定不同的算式;
①“月”+“日”+“赛”=21;
7+7+7=21,可得1种;
6+7+8=21,可得6种;
6+6+9=21,可得3种;
5+8+8=21,可得3种;
5+7+9=21,可得6种;
4+8+9=21,可得6种;
3+9+9=21,可得3种;
那么月”+“日”+“赛”的和是21,可以得到1+6+3+3+6+6+3=28种不同算式;
②“月”+“日”+“赛”=21;
2+0+9=11,可得6种;
3+0+8=11,可得6种;
4+0+7=11,可得6种;
5+0+6=21,可得6种;
1+1+9=11,可得3种;
2+1+8=11,可得6种;
3+1+7=11,可得6种;
4+1+6=11,可得6种;
5+1+5=11,可得3种;
2+2+7=11,可得3种;
3+2+6=11,可得6种;
4+2+5=11,可得6种;
3+3+5=11,可得3种;
4+3+4=11,可得3种;
那么月”+“日”+“赛”的和是11,可以得到6+6+6+6+3+6+6+6+3+3+6+6+3+3=69种不同算式;
③“月”+“日”+“赛”=1;
0+0+1=1,可得3种;
那么月”+“日”+“赛”的和是1,可以得到3种不同算式;
综上可得:一共有28+69+3=100种不同算式.
看了 在下面的加法坚式中,不同的汉...的网友还看了以下:
向足量氢氧化钡溶液中加入少量NaHSO4.向少量氢氧化钡溶液加多量NaHSO4,证明反应方程式系数 2020-04-26 …
小明买了铅笔,橡皮和本子三样文具,已知它们的数目是各不相同的质数,且满足:铅笔小明买了铅笔、橡皮和 2020-05-16 …
鸡兔同笼问题,数量关系式:假设全是鸡,则有()只数=(总足数-2×总头数)÷2()只数=总头数-鸡 2020-06-27 …
数学鸡兔同笼问题解答速度啊1.伺养员老杨养了一群鸭和狗,鸭的只数比狗的只数多26只,足数共274只 2020-06-28 …
⒈鸡兔同聋,兔的只数是鸡的只数的3倍,共有脚280只.鸡兔各有多少只?(用方程解)⒉饲养员老李养了 2020-07-16 …
将5个不同的质数从小到大排列成组成一个多位数M,其中,从小到大排列的5个质数满足:任意两个相邻质数 2020-07-31 …
鸡兔同群,足数为头数的2倍还多14,兔有多少只 2020-11-19 …
1、鹤龟同池,鹤比龟多12只,鹤龟足共72只,求鹤龟各有几只?2、一些2分与5分的硬币共299分,其 2020-11-19 …
数学高手来!1.体育用品的仓库里有许多足球,排球和篮球.有66名同学来仓库拿球,要求每人至少拿1个球 2020-11-19 …
某校购买了甲、乙两种不同的足球,其中购买甲种足球共花费2000元,购买乙种足球共花费1400元.己知 2020-12-08 …