早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图在等边△ABC中,D、E分别是BC、AC上的点,且AE=CD,AD与BE相交于F,CF⊥BE.求证:(1)BE=AD;(2)BF=2AF.

题目详情
如图在等边△ABC中,D、E分别是BC、AC上的点,且AE=CD,AD与BE相交于F,CF⊥BE.求证:
(1)BE=AD;
(2)BF=2AF.
▼优质解答
答案和解析
证明:(1)∵△ABC是等边三角形,
∴∠BAC=∠ACB=60°,AB=AC,
∵在△ABE和△CAD中
AB=AC
∠BAE=∠ACD
AE=CD

∴△ABE≌△CAD(SAS),
∴BE=AD;

(2)过B作AD的垂线,垂足为K,如图,
∵△ABE≌△CAD,
∴∠ABE=∠CAD,
∵∠ABE+∠CBE=∠BAD+∠CAD=60°,
∴∠BAD=∠CBE,
∴∠BFK=∠BAF+∠ABF=∠CBE+∠ABF=∠ABC=60°,
∵CF⊥BE,
∴∠BEC=90°,
∴∠FBK=30°,
∴FK=
1
2
BF,
∵在△ABK和△BCF中
∠BAK=∠CBF
∠AKB=∠BFC
AB=BC

∴△ABK≌△BCF(AAS),
∴AK=BF,即AF+FK=BF,
∴AF+
1
2
BF=BF,
∴BF=2AF.
看了 如图在等边△ABC中,D、E...的网友还看了以下: