早教吧作业答案频道 -->数学-->
如图:BE⊥AC,CF⊥AB,BM=AC,CN=AB.求证:(1)AM=AN;(2)AM⊥AN.
题目详情
如图:BE⊥AC,CF⊥AB,BM=AC,CN=AB.求证:(1)AM=AN;(2)AM⊥AN.
▼优质解答
答案和解析
证明:(1)∵BE⊥AC,CF⊥AB,
∴∠1+∠BMF=90°,∠2+∠CME=90°,
∵∠BMF=∠CME(对顶角相等),
∴∠1=∠2,
在△ABM和△NCA中,
∵
,
∴△ABM≌△NCA(SAS),
∴AM=AN;
(2)根据(1)可得△ABM≌△NCA,
∴∠3=∠N,
∵CF⊥AB,
∴∠4+∠N=90°,
∴∠3+∠4=90°,
即∠MAN=90°,
因此,AM⊥AN.
∴∠1+∠BMF=90°,∠2+∠CME=90°,
∵∠BMF=∠CME(对顶角相等),
∴∠1=∠2,
在△ABM和△NCA中,
∵
|
∴△ABM≌△NCA(SAS),
∴AM=AN;
(2)根据(1)可得△ABM≌△NCA,
∴∠3=∠N,
∵CF⊥AB,
∴∠4+∠N=90°,
∴∠3+∠4=90°,
即∠MAN=90°,
因此,AM⊥AN.
看了 如图:BE⊥AC,CF⊥AB...的网友还看了以下:
如果a>0,b>0,m,n都是有理数,下列各式错误的是()A.(am)-n=a-mnB.am•a- 2020-05-13 …
已知椭圆cx^2/a^2+y^2/b^2=1(a>b>0)经点A(2,1)离心率√2/2.(1)求 2020-05-15 …
根据句意及首字母提示,写出相应单词.1.i help sick people in the hos 2020-05-16 …
已知数列{an}为等差数列,若am=a,an=b(n-m≥1,m,n∈N*),则am+n=nb−m 2020-08-01 …
已知命题:“若数列{an}为等差数列,且am=a,an=b(m≠n,m,n∈N+),则am+n=ma 2020-11-27 …
已知命题:若数列{an}为等差数列,且am=a,an=b(m≠n,m、n∈N*),则am+n=bn− 2020-11-29 …
已知命题:若数列{an}为等差数列,且am=a,an=b(m≠n,m、n∈N+)则am+n=bn−a 2020-11-29 …
已知数列{an}为等差数列,若am=a,an=b(n-m≥1,m,n∈N*),则am+n=nb−ma 2020-11-29 …
已知数列{an}为等差数列,若am=a,an=b(n-m≥1,m,n∈N*),则a1=(m−1)b− 2020-11-29 …
已知命题:若数列{an}为等差数列,且am=a,an=b(m≠n,m、n∈N∗)则am+n=bn−a 2020-11-29 …