早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图,AB、CD是⊙O的直径,DF、BE是弦,且DF=BE,求证:∠D=∠B.

题目详情
如图,AB、CD是⊙O的直径,DF、BE是弦,且DF=BE,求证:∠D=∠B.
▼优质解答
答案和解析
方法(一)
证明:∵AB、CD是⊙O的直径,
∴弧CFD=弧AEB.
∵FD=EB,
∴弧FD=弧EB.
∴弧CFD-弧FD=弧AEB-弧EB.
即弧FC=弧AE.
∴∠D=∠B.
方法(二)
证明:如图,连接CF,AE.
∵AB、CD是⊙O的直径,
∴∠F=∠E=90°(直径所对的圆周角是直角).
∵AB=CD,DF=BE,
∴Rt△DFC≌Rt△BEA(HL).
∴∠D=∠B.