早教吧作业答案频道 -->数学-->
线性代数的几道题,1.设四阶方阵A=(a1,a2,a3,a4),且a1,a2,a3线性无关,a4=a1+a2+a3,已知b=a1+a2+a3+a4,则线性方程组AX=b的通解为2.四阶实对称矩阵A满足A^2=A,且R(A)=3,则|A+E|=3.已知A是n阶可逆矩阵,α1,a2,a3是n
题目详情
线性代数的几道题,
1.设四阶方阵A=(a1 ,a2,a3,a4),且a1,a2,a3线性无关,a4=a1+a2+a3,已知b=a1+a2+a3+a4,则线性方程组AX=b的通解为
2.四阶实对称矩阵A满足A^2=A,且R(A)=3,则|A+E|=
3.已知A是n阶可逆矩阵,α1,a2,a3是n阶线性无关的列向量,求证Aa1,Aa2,Aa3线性无关(用方程组做,
1.设四阶方阵A=(a1 ,a2,a3,a4),且a1,a2,a3线性无关,a4=a1+a2+a3,已知b=a1+a2+a3+a4,则线性方程组AX=b的通解为
2.四阶实对称矩阵A满足A^2=A,且R(A)=3,则|A+E|=
3.已知A是n阶可逆矩阵,α1,a2,a3是n阶线性无关的列向量,求证Aa1,Aa2,Aa3线性无关(用方程组做,
▼优质解答
答案和解析
1:AX=b的通解,等于它的一个特解加上导出组AX=0的通解.所以现在来求AX=0的通解.我们需要知道基础解系的个数,也就是n-r,r是向量组的秩等于极大先线性无关组的个数,我们发现a1 ,a2,a3,a4极大线性无关组就是a1 ,a2,a3,一共3个,那么r=3,n-r=1.基础解系怎么求呢?不妨设X=(x1,x2,x3,x4)我们发现求AX=0也就是a1^x1+a2^x2+a3^x3+a4^x4=0 这时候可以看明白了,唯一的基础解系就是(1,1,1,-1).导出组的通解为η=k(1,1,1,-1).现在在找一个AX=b的特解ξ即可.A(η+ξ)=b就是Aξ=b那么令ξ=(1,1,1,1)不就行了嘛.所以通解为k(1,1,1,-1)+(1,1,1,1)
2:实对称矩阵一定有实特征值.n=4>r=3,是降秩矩阵、就是说是不可逆的.由于特征值的乘积等于行列式值detA=0,那么4个特征值一定有一个0 .A的其余特征值为μ则A^2的特征值为μ^2.μ^2=μ 得到剩余3个特征值为1.对于|A+E|可以构造f(t)=t+1,这你应该懂的.|A+E|=f(1)^f(1)^f(1)^f(0)等于8.
3:设3个数x1,x2,x3. 令x1^Aa1+x2^Aa2+x3^Aa3=0,证明x1=x2=x3=0即可.化成 A(x1a1+x2a2+x3a3)=0,就可以看出x1=x2=x3=0.
2:实对称矩阵一定有实特征值.n=4>r=3,是降秩矩阵、就是说是不可逆的.由于特征值的乘积等于行列式值detA=0,那么4个特征值一定有一个0 .A的其余特征值为μ则A^2的特征值为μ^2.μ^2=μ 得到剩余3个特征值为1.对于|A+E|可以构造f(t)=t+1,这你应该懂的.|A+E|=f(1)^f(1)^f(1)^f(0)等于8.
3:设3个数x1,x2,x3. 令x1^Aa1+x2^Aa2+x3^Aa3=0,证明x1=x2=x3=0即可.化成 A(x1a1+x2a2+x3a3)=0,就可以看出x1=x2=x3=0.
看了 线性代数的几道题,1.设四阶...的网友还看了以下:
关于线性代数的问题,急·····1)设A为n阶矩阵,若存在正整数k使得A^k=O,则称A为幂零矩阵 2020-05-14 …
矩阵特征值特征向量对于矩阵A,若A为降秩矩阵,则至少有一个特征值为0.若R(A)=r,则A至少有n 2020-06-16 …
设A为n阶对陈阵,P为n阶可逆阵,x是A的对应特征值r的特征向量,则(P-1AP)T对应r的特征向 2020-06-18 …
线性代数疑问已知c为可逆矩阵,a,b为对称矩阵,b=c'ac(c'为c的转置矩阵)请问为什么有“r 2020-07-09 …
1.设四阶方阵A=(a1,a2,a3,a4),且a1,a2,a3线性无关,a4=a1+a2+a3, 2020-07-09 …
线性代数的几道题,1.设四阶方阵A=(a1,a2,a3,a4),且a1,a2,a3线性无关,a4= 2020-07-09 …
设G是Mn(R)上的加法群,n≥2,判断下述子集是否构成子群.(1)全体对称矩阵(2)全体对角矩阵 2020-07-29 …
有关r重根问题!设A为n阶对称矩阵,x是A的特征方程的r重根,则矩阵A-xE的秩R(A-xE)=n 2020-07-31 …
秩为1的矩阵一定和对角矩阵相似吗请简要说明理由,1.首先问题中不应该为矩阵,而是“方阵”.2.方阵规 2020-12-01 …
矩阵相似矩阵B001010100已知A相似于B求R(A-2E)+R(A-E)的值对于矩阵相似至今我也 2020-12-31 …