早教吧 育儿知识 作业答案 考试题库 百科 知识分享

设△AnBnCn的三边长分别为an,bn,cn,△AnBnCn的面积为Sn,n=1,2,3…若b1>c1,b1+c1=2a1,an+1=an,b设△AnBnCn的三边长分别为an,bn,cn,△AnBnCn的面积为Sn,n=1,2,3…若b1>c1,b1+c1=2a1,an+1=an,bn+

题目详情
设△AnBnCn的三边长分别为an,bn,cn,△AnBnCn的面积为Sn,n=1,2,3…若b1>c1,b1+c1=2a1,an+1=an,b
设△AnBnCn的三边长分别为an,bn,cn,△AnBnCn的面积为Sn,n=1,2,3…若b1>c1,b1+c1=2a1,an+1=anbn+1=
cn+an
2
cn+1=
bn+an
2
,则(  )
A.{Sn}为递减数列
B.{Sn}为递增数列
C.{S2n-1}为递增数列,{S2n}为递减数列
D.{S2n-1}为递减数列,{S2n}为递增数列
▼优质解答
答案和解析
因为an+1=anbn+1=
cn+an
2
cn+1=
bn+an
2
,所以an=a1
所以bn+1+cn+1=an+
bn+cn
2
=a1+
bn+cn
2

所以bn+1+cn+1-2a1=
1
2
(bn+cn?2a1),
又b1+c1=2a1,所以bn+cn=2a1
于是,在△AnBnCn中,边长BnCn=a1为定值,另两边AnCn、AnBn的长度之和bn+cn=2a1为定值,
因为bn+1-cn+1=
cn+an
2
?
bn+an
2
=?
1
2
(bn?cn),
所以bn-cn=(?
1
2
)n?1(b1?c1),
当n→+∞时,有bn-cn→0,即bn→cn
于是△AnBnCn的边BnCn的高hn随着n的增大而增大,
所以其面积Sn=
1
2
|BnCn|?hn=
1
2
a1hn为递增数列,
故选B.