早教吧 育儿知识 作业答案 考试题库 百科 知识分享

f'(0)存在,且lim(x趋向于0)1/x[f(x)-f(x/3)]=a,求'f(0)

题目详情
f'(0) 存在,且lim(x趋向于0) 1/x[f(x)-f(x/3)]=a,求'f(0)
▼优质解答
答案和解析
lim(x->0)[f(x)-f(x/3)]/x
=lim(x->0)[f(x)-f(0)+f(0)-f(x/3)]/x
=lim(x->0)[f(x)-f(0)]/(x-0)-lim(x->0)[f(x/3)-f(0)]/x
=f'(0)-lim(x->0)(1/3)*[f(x/3)-f(0)]/(x/3-0)
=f'(0)-1/3*lim(x/3->0)[f(x/3)-f(0)]/(x/3-0)
=f'(0)-1/3*f'(0)
=2/3*f'(0)
即2/3*f'(0)=a
所以f'(0)=3a/2