早教吧作业答案频道 -->数学-->
1.P,Q是两个定点,点M为平面内的动点,且MP=λMQ(λ>0且λ≠1),点M的轨迹围成的平面区域的面积为S,设S=f(λ)(λ>0且λ≠1)则以下判断正确的是()A.f(λ)在(0,1)上是增函数,在(1,+∞)上是减函
题目详情
1.P,Q是两个定点,点M为平面内的动点,且MP=λMQ(λ>0且λ≠1),点M的轨迹围成的平面区域的面积为S,设S=f(λ)(λ>0且λ≠1)则以下判断正确的是( )
A.f(λ)在(0,1)上是增函数,在(1,+∞)上是减函数
B.f(λ)在(0,1)上是减函数,在(1,+∞)上是减函数
C.f(λ)在(0,1)上是增函数,在(1,+∞)上是增函数
D.f(λ)在(0,1)上是减函数,在(1,+∞)上是增函数
2.二次函数f(x)=ax^2-4x+c的值域为[0,+∞),且f(1)≤4,则u=a/(c^2+4)+c/(a^2+4)的最大值为( )
A.7/4
B.5/2
C.4/5
D.1/2
a=4+2√3,c=4-2√3时是不是得到的最大值是3,是否符合题意?
A.f(λ)在(0,1)上是增函数,在(1,+∞)上是减函数
B.f(λ)在(0,1)上是减函数,在(1,+∞)上是减函数
C.f(λ)在(0,1)上是增函数,在(1,+∞)上是增函数
D.f(λ)在(0,1)上是减函数,在(1,+∞)上是增函数
2.二次函数f(x)=ax^2-4x+c的值域为[0,+∞),且f(1)≤4,则u=a/(c^2+4)+c/(a^2+4)的最大值为( )
A.7/4
B.5/2
C.4/5
D.1/2
a=4+2√3,c=4-2√3时是不是得到的最大值是3,是否符合题意?
▼优质解答
答案和解析
1、
设:M(x,y),为方便设P(-a,0),Q(a,0)
则:|MP|=λ|MQ|⇒|MP|²=λ²[|MQ|²⇒(x+a)²+y²=λ²[(x-a)²+y²]⇒
(1-λ²)x²+(1-λ²)y²+2a(1+λ²)x=a²(λ²-1)⇒
x²+y²-[2a(λ²+1)/(λ²-1)]x=-a²⇒其轨迹是个圆.圆的半径是R,则:R²=[2a(λ²+1)/(λ²-1)]²-a² ⇒题目中f(x)的单调性就是这个的单调性
设:f(λ)=[2(λ²+1)/(λ²-1)]²=4[1+ 2/(λ²-1)]²
故选A.
2、
f(x)=ax^2-4x+c的值域为[0,+∞),且f(1)≤4
a>0,△=0
16-4ac=0,ac=4,c>0===>a+c>=2√ac=4
f(1)≤4
a-4+c
设:M(x,y),为方便设P(-a,0),Q(a,0)
则:|MP|=λ|MQ|⇒|MP|²=λ²[|MQ|²⇒(x+a)²+y²=λ²[(x-a)²+y²]⇒
(1-λ²)x²+(1-λ²)y²+2a(1+λ²)x=a²(λ²-1)⇒
x²+y²-[2a(λ²+1)/(λ²-1)]x=-a²⇒其轨迹是个圆.圆的半径是R,则:R²=[2a(λ²+1)/(λ²-1)]²-a² ⇒题目中f(x)的单调性就是这个的单调性
设:f(λ)=[2(λ²+1)/(λ²-1)]²=4[1+ 2/(λ²-1)]²
故选A.
2、
f(x)=ax^2-4x+c的值域为[0,+∞),且f(1)≤4
a>0,△=0
16-4ac=0,ac=4,c>0===>a+c>=2√ac=4
f(1)≤4
a-4+c
看了 1.P,Q是两个定点,点M为...的网友还看了以下:
小车在水平面上匀速行驶向右,车厢内固定一木桌,桌面水平不光滑,有摩擦力,桌面上放着物体质量分别为M和 2020-03-31 …
已知函数f(x)=-x^2+2lnx(ln2≈0.7)(1)若函数g(x)=f(x)-m在区间1/ 2020-04-26 …
在空间中,下列命题正确的是()A.如果直线m∥平面α,直线n⊂α内,那么m∥nB.如果平面α内的两 2020-05-13 …
已知m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A.若α,β不平行,则在 2020-05-13 …
急1.求使函数f(x)=100|(x-1)(x-2)|-kx有四个不同零点的最大正整数k2.设函数 2020-05-14 …
在光滑的桌面上有M,m两个物块,两者紧紧挨在一起,M在右边m在右边,现用一水平推力F作用在m的左侧 2020-05-17 …
高三数学:设函数f(x)=x-In(x+m),其中m为实常数.求:1.当m为何值时,f(x)≥02 2020-06-13 …
假设每人每天钓到的鱼的条数为定值,m人在m天内钓到了m条鱼,则(m+1)人在(m+1)天内钓到多少 2020-06-19 …
如图,在某海域内有三个港口P、M、N.港口M在港口P的南偏东60°的方向上,港口N在港口M的正西方 2020-07-22 …
已知函数f(x)=alnx-bx2图象上一点P(2,f(2))处的切线方程为y=-3x+2ln2+ 2020-08-02 …