早教吧作业答案频道 -->数学-->
已知数列{an}中,a1=1,a1+2a2+3a3+...+nan=(n+1)(an)/2+1(n∈正整数)(1)求数列{an}的通项公式an
题目详情
已知数列{an}中,a1=1,a1+2a2+3a3+...+nan=(n+1)(an)/2 +1(n∈正整数)(1)求数列{an}的通项公式an
▼优质解答
答案和解析
a1+2a2+3a3+...+nan=(n+1)(an)/2 (1)
a1+2a2+3a3+...+nan+ (n+1)a(n+1)=(n+2)a(n+1)/2 (2)
(2)-(1)
(n+1)a(n+1) = (1/2)[ (n+2)a(n+1) -(n+1)an ]
na(n+1) = -(n+1)an
a(n+1)/an = - (n+1)n
an/a(n-1) = - n/(n-1)
an/a1 = (-1)^(n-1) .n
an=(-1)^(n-1) .n
a1+2a2+3a3+...+nan+ (n+1)a(n+1)=(n+2)a(n+1)/2 (2)
(2)-(1)
(n+1)a(n+1) = (1/2)[ (n+2)a(n+1) -(n+1)an ]
na(n+1) = -(n+1)an
a(n+1)/an = - (n+1)n
an/a(n-1) = - n/(n-1)
an/a1 = (-1)^(n-1) .n
an=(-1)^(n-1) .n
看了 已知数列{an}中,a1=1...的网友还看了以下:
已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=((n+1)/2)a(n+1)(n 2020-05-16 …
已知数列{an}满足a1=1,an=a1+1/2a2+1/3a3+...+1/n-1an-1(n> 2020-05-16 …
数列不等式递推式如图,Sn为其前n项和an+1=((n+2)an²-nan+n+1)/(an²+1 2020-06-27 …
数列{an}中,a1=6且an-an-1=an-1/n+n+1(n>=2)则这个数列的通项公式是要 2020-07-09 …
已知数列{an}满足nan+1=(n+1)an+2n(n+1),n属于正整数,且a1=1,设bn= 2020-07-09 …
lim(-5)^n+(3)^n+2/(-5)^n+1+3^nan=1/n(n+1)1≤n≤33×1 2020-07-16 …
设数列{an}的前n项和为Sn,已知a1=1,Sn=nan-n(n-1)(n=1,2,3…).数列 2020-07-22 …
已知a1=5,an=2an-1+3^n,求{an}的通项公式an=2an-1+3^n两边同加3^n 2020-07-22 …
在数列{an}中,a1=1,an+1=(1+1/n)an+(n+1)∕2n设bn=an/n,求证b 2020-08-02 …
己知数列{an}满足an+1+(-1)nan=n,(n∈N*),则数列{an}的前2016项的和S2 2021-01-12 …