早教吧作业答案频道 -->数学-->
在等差数列{an}中,a3+a4+a5=84,a9=73.(Ⅰ)求数列{an}的通项公式;(Ⅱ)对任意m∈N*,将数列{an}中落入区间(9m,92m)内的项的个数记为bm,求数列{bm}的前m项和Sm.
题目详情
在等差数列{an}中,a3+a4+a5=84,a9=73.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)对任意m∈N*,将数列{an}中落入区间(9m,92m)内的项的个数记为bm,求数列{bm}的前m项和Sm.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)对任意m∈N*,将数列{an}中落入区间(9m,92m)内的项的个数记为bm,求数列{bm}的前m项和Sm.
▼优质解答
答案和解析
(I)∵数列{an}是等差数列
∴a3+a4+a5=3a4=84,
∴a4=28
设等差数列的公差为d
∵a9=73
∴d=
=
=9
由a4=a1+3d可得28=a1+27
∴a1=1
∴an=a1+(n-1)d=1+9(n-1)=9n-8
(II)若9m<an<92m
则9m+8<9n<92m+8
因此9m-1+
≤n≤92m-1+
故得bm=92m−1−9m−1
∴Sm=b1+b2+…+bm
=(9+93+95+…+92m-1)-(1+9+…+9m-1)
=
−
=
∴a3+a4+a5=3a4=84,
∴a4=28
设等差数列的公差为d
∵a9=73
∴d=
a9−a4 |
9−4 |
73−28 |
5 |
由a4=a1+3d可得28=a1+27
∴a1=1
∴an=a1+(n-1)d=1+9(n-1)=9n-8
(II)若9m<an<92m
则9m+8<9n<92m+8
因此9m-1+
8 |
9 |
8 |
9 |
故得bm=92m−1−9m−1
∴Sm=b1+b2+…+bm
=(9+93+95+…+92m-1)-(1+9+…+9m-1)
=
9(1−81m) |
1−81 |
1−9m |
1−9 |
=
92m+1−10×9m+1 |
80 |
看了 在等差数列{an}中,a3+...的网友还看了以下:
项数为奇数的等差数列,各奇数项之和为44,各偶数项之和为33,则中间一项为?设有n项则奇数项有(n 2020-04-09 …
已知数列a(n)为等比数列,a(4)=16,q=2,数列b(n)前N项和s(n)=1/2*n的平方 2020-05-13 …
湘教版教材解析必修4,56页知识点三:等差数列前n项和公式与函数的关系我们已经知道,等差数列的前n 2020-07-06 …
已知数列{an}的前n项和Sn=n^2(n∈N),数列{bn}是各项均为正数的等比数列,b3=1, 2020-07-09 …
已知数列an的前n项和sn=n²+n/2,①求an②设bn=an·2^n,求数列bn的前n项已知数 2020-07-18 …
已知数列an的通项和为n(n+1)而数列bn的第n项bn,等于数列an的第2的n次方既bn=A下标 2020-07-29 …
已知数列的首项为a1=2,前n项和为Sn,且对任意的n∈N*,当n≥2时,an总是3Sn-4与2− 2020-07-30 …
在各项均为正数的数列{an}中a1=三分之一且an+1-an+4an+1an=0通项公式前n项和在 2020-07-30 …
在1与100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记作Tn,令a 2020-11-11 …
求数列an=n(n+1)的前n项和.an=n(n+1)=[n(n+1)(n+2)-(n-1)n(n+ 2020-12-03 …