早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2014•湖南)如图,四棱柱ABCD-A1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.(Ⅰ)证明:O1O⊥底面ABCD;(Ⅱ)若∠CBA=60°,求二面角C1-OB1-D的余弦值

题目详情
(2014•湖南)如图,四棱柱ABCD-A1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.
(Ⅰ)证明:O1O⊥底面ABCD;
(Ⅱ)若∠CBA=60°,求二面角C1-OB1-D的余弦值.
▼优质解答
答案和解析
证明:(Ⅰ)∵四棱柱ABCD-A1B1C1D1的所有棱长都相等,
∴四边形ABCD为菱形,
又∵AC∩BD=O,
故O为BD的中点,
同理O1也是B1D1的中点,
又∵四边形ACC1A1和四边形BDD1B1均为矩形,
∴O1O∥CC1∥BB1且CC1⊥AC,BB1⊥BD,
∴OO1⊥AC,OO1⊥BD,
又∵AC∩BD=O,AC,BD⊂平面ABCD,
∴O1O⊥底面ABCD;
(Ⅱ)设四棱柱ABCD-A1B1C1D1的所有棱长均相等,所以四边形ABCD是菱形,
∴AC⊥BD,
又∵O1O⊥底面ABCD,
∴OB,OC,OO1两两垂直,

如图,以O为坐标原点,OB,OC,OO1所在直线分别为x轴,y轴,z轴建立直角坐标系O-xyz.
设AB=2,
∵∠CBA=60°,
∴OA=OC=1,OB=OD=
3

则O(0,0,0),B1
3
,0,2),C1(0,1,2)
易知,
n1
=(0,1,0)是平面BDD1B1的一个法向量,
n2
=(x,y,z)是平面OB1C1的一个法向量,则
n2
作业帮用户 2016-11-24
为您推荐:
问题解析
(Ⅰ)由已知中,四棱柱ABCD-A1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.可得O1O∥CC1∥BB1且CC1⊥AC,BB1⊥BD,进而OO1⊥AC,OO1⊥BD,再由线面垂直的判定定理得到O1O⊥底面ABCD;
(Ⅱ)设四棱柱ABCD-A1B1C1D1的所有棱长均为2a,设AB为2,若∠CBA=60°,OA=OC=1,OB=OD=
3
,以O为坐标原点,分别以OB,OC,OO1为x,y,z轴正方向建立空间直角坐标系,求出平面BDD1B1和平面OB1C1的法向量,代入向量夹角公式,求出二面角的余弦值.
名师点评
本题考点:
与二面角有关的立体几何综合题;直线与平面垂直的判定.
考点点评:
本题考查的知识点是空间二面角的平面角,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.
广告
我是二维码 扫描下载二维码