早教吧作业答案频道 -->数学-->
已知数列bn=2n+1,求(1/b1b2)+(1/b2b3)+(1/b3b4)+…+(1/bnbn+1)
题目详情
已知数列bn=2n+1,求(1/b1b2)+(1/b2b3)+(1/b3b4)+…+(1/bnbn+1)
▼优质解答
答案和解析
bn=2n+1 b(n+1)=2n+3
1/bnb(n+1)=1/(2n+1)(2n+3)
=(1/2)[(2n+3)-(2n+1)]/[(2n+1)(2n+3)]
=(1/2)[1/(2n+1)-1/(2n+3)]
则(1/b1b2)+(1/b2b3)+(1/b3b4)+…+(1/bnbn+1)
=(1/2)*(1/3-1/5)+(1/2)*(1/5-1/7)+(1/2)*(1/7-1/9)+...+(1/2)*[1/(2n+1)-1/(2n+3)]
=(1/2)*[1/3-1/(2n+3)]
=(1/2)(2n+3-3)/[3(2n+3)]
=n/(6n+9)
希望能帮到你O(∩_∩)O
1/bnb(n+1)=1/(2n+1)(2n+3)
=(1/2)[(2n+3)-(2n+1)]/[(2n+1)(2n+3)]
=(1/2)[1/(2n+1)-1/(2n+3)]
则(1/b1b2)+(1/b2b3)+(1/b3b4)+…+(1/bnbn+1)
=(1/2)*(1/3-1/5)+(1/2)*(1/5-1/7)+(1/2)*(1/7-1/9)+...+(1/2)*[1/(2n+1)-1/(2n+3)]
=(1/2)*[1/3-1/(2n+3)]
=(1/2)(2n+3-3)/[3(2n+3)]
=n/(6n+9)
希望能帮到你O(∩_∩)O
看了 已知数列bn=2n+1,求(...的网友还看了以下:
已知递增的等比数列{a}(注:""内是下角标,后同)的前3项之积是512,且这三项分别减去1,3,9 2020-03-30 …
1.求数列1,x+x^2,x^2+x^3+x^4,x^3+x^4+x^5+x^6,...前n项之和2 2020-03-30 …
已知数列an的前n项和为Sn,且Sn=n-2an-7,n属于正整数1.证明:an-1是等比数列2. 2020-05-13 …
已知数列{αn}中,α1=2,αn+1=1/2αn,求:①该数列αn通项公式②该数列前五项和S5 2020-05-20 …
设数列{an}的前n项和为Sn,已知a1=1,an+1=3Sn+1,m∈N+求数列{an}的通项公 2020-06-05 …
已知数列{an}是首项a1=a,公差为2的等差数列;数列{bn}满足2bn=(n+1)an(2)若 2020-07-09 …
数列an的前n项和记为sn,已知a1=1an+1=(n分之n+2)乘sn(n=1,2,3,...) 2020-07-21 …
已知数列{an}各项均为正数,其前n项和为Sn,且a1=1,anan+1=2Sn.(n∈N*)(1 2020-07-22 …
已知数列{an}的首项a1=2/3,a(n+1)=(2an)/(an+1),1证明数列{(1/an 2020-07-30 …
已知数列{an}的前n项和Sn=pn²-n,其中p∈R,且a3=4(1)求an(2)设数列{bn}满 2020-11-04 …