早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2013•福建)如图,在四棱柱ABCD-A1B1C1D1中,侧棱AA1⊥底面ABCD,AB∥DC,AA1=1,AB=3k,AD=4k,BC=5k,DC=6k,(k>0)(1)求证:CD⊥平面ADD1A1(2)若直线AA1与平面AB1C所成角的正弦值为67,求k的值

题目详情
(2013•福建)如图,在四棱柱ABCD-A1B1C1D1中,侧棱AA1⊥底面ABCD,AB∥DC,AA1=1,AB=3k,AD=4k,BC=5k,DC=6k,(k>0)
(1)求证:CD⊥平面ADD1A1
(2)若直线AA1与平面AB1C所成角的正弦值为
6
7
,求k的值
(3)现将与四棱柱ABCD-A1B1C1D1形状和大小完全相同的两个四棱柱拼成一个新的四棱柱,规定:若拼成的新四棱柱形状和大小完全相同,则视为同一种拼接方案,问共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为f(k),写出f(k)的解析式.(直接写出答案,不必说明理由)
▼优质解答
答案和解析
(1)证明:取DC的中点E,连接BE,∵AB∥ED,AB=ED=3k,
∴四边形ABED是平行四边形,
∴BE∥AD,且BE=AD=4k,∴BE2+EC2=(4k)2+(3k)2=(5k)2=BC2,∴∠BEC=90°,∴BE⊥CD,
又∵BE∥AD,∴CD⊥AD.
∵侧棱AA1⊥底面ABCD,∴AA1⊥CD,
∵AA1∩AD=A,∴CD⊥平面ADD1A1
(2)以D为坐标原点,
DA
DC
DD1
的方向为x,y,z轴的正方向建立空间直角坐标系,
则A(4k,0,0),C(0,6k,0),B1(4k,3k,1),A1(4k,0,1).
AC
=(−4k,6k,0),
AB1
=(0,3k,1),
AA1
=(0,0,1).
设平面AB1C的一个法向量为
n
=(x,y,z),则
作业帮用户 2017-10-06
为您推荐:
问题解析
(1)取DC得中点E,连接BE,可证明四边形ABED是平行四边形,再利用勾股定理的逆定理可得BE⊥CD,即CD⊥AD,又侧棱AA1⊥底面ABCD,可得AA1⊥DC,利用线面垂直的判定定理即可证明.(2)通过建立空间直角坐标系,求出平面的法向量与斜线的方向向量的夹角即可得出;(3)由题意可与左右平面ADD1A1,BCC1B1,上或下面ABCD,A1B1C1D1拼接得到方案
新四棱柱共有此4种不同方案.写出每一方案下的表面积,通过比较即可得出f(k).
名师点评
本题考点:
用空间向量求直线与平面的夹角;棱柱、棱锥、棱台的侧面积和表面积;直线与平面垂直的判定;直线与平面所成的角.
考点点评:
本题主要考查了线线、线面的位置关系、通过建立空间直角坐标系利用法向量求线面角、柱体的定义积表面积、勾股定理的逆定理等基础知识,考查了空间想象能力、推理能力和计算能力及化归与转化能力.
广告
我是二维码 扫描下载二维码