早教吧作业答案频道 -->数学-->
数列an中,a1=0.5,an+1=an+an^2,bn=1/(1+an),sn=b1+b2=b3……+bn,pn=b1b2b3……bn,求2pn+sn的值
题目详情
数列an中,a1=0.5,an+1=an+an^2,bn=1/(1+an),sn=b1+b2=b3……+bn,pn=b1b2b3……bn,求2pn+sn的值
▼优质解答
答案和解析
a(n+1)=an(1+an)
所以bn=1/(1+an)=an/a(n+1)
又由a(n+1)=an+an^2得(两边同除ana(n+1))
1/an=1/a(n+1)+an/a(n+1))=1/a(n+1)+bn
所以bn=1/an-1/a(n+1)
所以sn=b1+b2+...+bn=1/a1-1/a2+1/a2-1/a3+...+1/an-1/a(n+1)
=1/a1-1/a(n+1)
pn=b1b2...bn=(a1/a2)(a2/a3)...(an/a(n+1))
=a1/a(n+1)
所以2pn=2a1/a(n+1)=1/a(n+1)
所以sn+2pn=1/a1-1/a(n+1)+1/a(n+1)
=1/a1=2
所以bn=1/(1+an)=an/a(n+1)
又由a(n+1)=an+an^2得(两边同除ana(n+1))
1/an=1/a(n+1)+an/a(n+1))=1/a(n+1)+bn
所以bn=1/an-1/a(n+1)
所以sn=b1+b2+...+bn=1/a1-1/a2+1/a2-1/a3+...+1/an-1/a(n+1)
=1/a1-1/a(n+1)
pn=b1b2...bn=(a1/a2)(a2/a3)...(an/a(n+1))
=a1/a(n+1)
所以2pn=2a1/a(n+1)=1/a(n+1)
所以sn+2pn=1/a1-1/a(n+1)+1/a(n+1)
=1/a1=2
看了 数列an中,a1=0.5,a...的网友还看了以下:
已知数列an是各项均不为0的等差数列,Sn为其前n项和,且满足S2n-1=1/2an^2,数列bn 2020-04-09 …
已知等差数列{an}和正项等比数列{bn},a1=b1=1,a3=b3=2.(1)求an、bn.( 2020-05-13 …
已知等差数列an和正向等比数列bn,a1=b1=1,a3=b3=2已知等差数列an和正向等比数列b 2020-05-13 …
数列an的前n项和为sn,存在常数A,B,C使得an+sn=An^2+Bn+C对任意正整数n都成立 2020-05-16 …
数列.(611:54:22)已知等比数列{an}的前n项和Sn=2^n+p(p∈R),数列{bn} 2020-06-06 …
已知数列{an}(n∈N*),若{an+an+1}为等比数列,则称{an}具有性质P.(1)若数列 2020-07-09 …
若数列bn满足4^b1-1*4^b2-1*4^b3-1*……*4^bn-1=(an+1)^bn若数 2020-07-09 …
若数列bn满足4^b1-1*4^b2-1*4^b3-1*……*4^bn-1=(an+1)^bn若数 2020-07-09 …
求通项式已知bn+1=bn^2+bn数列{bn}已知b1=1满足bn+1=bn^2+bn(注:n为 2020-07-29 …
无穷数列{an}是由正数组成的等差数列,并且a3=5,a4=(a1+a2)=28,bn=p^an+ 2020-08-02 …