早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知数列{an}(n∈N*),若{an+an+1}为等比数列,则称{an}具有性质P.(1)若数列{an}具有性质P,且a1=a2=1,a3=3,求a4、a5的值;(2)若bn=2n+(-1)n,求证:数列{bn}具有性质P;(3)设c1+c2+…+cn=

题目详情
已知数列{an}(n∈N*),若{an+an+1}为等比数列,则称{an}具有性质P.
(1)若数列{an}具有性质P,且a1=a2=1,a3=3,求a4、a5的值;
(2)若bn=2n+(-1)n,求证:数列{bn}具有性质P;
(3)设c1+c2+…+cn=n2+n,数列{dn}具有性质P,其中d1=1,d3-d2=c1,d2+d3=c2,若dn>102,求正整数n的取值范围.
▼优质解答
答案和解析
(1){an+an+1}为等比数列,
∵a1=a2=1,a3=3,
∴a1+a2=1+1=2,a2+a3=1+3=4,
∴{an+an+1}的公比为2,
∴an+an+1=2n
∴a3+a4=23=8,即a4=5,
∴a4+a5=24=16,即a5=11;
(2)∵bn=2n+(-1)n
∴bn+bn+1=2n+(-1)n+2n+1+(-1)n+1=3•2n
∴{bn+bn+1}是以公比为2的等比数列,
∴数列{bn}具有性质P.
(3)∵c1+c2+…+cn=n2+n,
∴c1+c2+…+cn-1=(n-1)2+n-1,
∴cn=2n,
∵d1=1,d3-d2=c1=2,d2+d3=c2=4,
∴d2=1,d3=3,
∵数列{dn}具有性质P,
由(1)可得,dn+dn+1=2n,∴d4=5,d5=11,d6=21,d7=43,d8=85,d9=171,
∵dn>102,∴正整数n的取值范围是[9,+∞).