早教吧作业答案频道 -->其他-->
(2014•湖北)如图,在正方体ABCD-A1B1C1D1中,E、F、P、Q、M、N分别是棱AB、AD、DD1、BB1、A1B1、A1D1的中点,求证:(Ⅰ)直线BC1∥平面EFPQ;(Ⅱ)直线AC1⊥平面PQMN.
题目详情
(2014•湖北)如图,在正方体ABCD-A1B1C1D1中,E、F、P、Q、M、N分别是棱AB、AD、DD1、BB1、A1B1、A1D1的中点,求证:
(Ⅰ)直线BC1∥平面EFPQ;
(Ⅱ)直线AC1⊥平面PQMN.
(Ⅰ)直线BC1∥平面EFPQ;
(Ⅱ)直线AC1⊥平面PQMN.
▼优质解答
答案和解析
证明:(Ⅰ)在正方体ABCD-A1B1C1D1中,连接AD1,
∵AD1∥BC1,且F、P分别是AD、DD1的中点,
∴FP∥AD1,∴BC1∥FP,
又FP⊂平面EFPQ,且BC1⊄平面EFPQ,
∴直线BC1∥平面EFPQ;
(Ⅱ)如图,
连接AC、BD,则AC⊥BD,∵CC1⊥平面ABCD,BD⊂平面ABCD,
∴CC1⊥BD;
又AC∩CC1=C,∴BD⊥平面ACC1,
又AC1⊂平面ACC1,∴BD⊥AC1;
又∵M、N分别是A1B1、A1D1的中点,
∴MN∥BD,∴MN⊥AC1;
同理可证PN⊥AC1,
又PN∩MN=N,∴直线AC1⊥平面PQMN.
∵AD1∥BC1,且F、P分别是AD、DD1的中点,
∴FP∥AD1,∴BC1∥FP,
又FP⊂平面EFPQ,且BC1⊄平面EFPQ,
∴直线BC1∥平面EFPQ;
(Ⅱ)如图,
连接AC、BD,则AC⊥BD,∵CC1⊥平面ABCD,BD⊂平面ABCD,
∴CC1⊥BD;
又AC∩CC1=C,∴BD⊥平面ACC1,
又AC1⊂平面ACC1,∴BD⊥AC1;
又∵M、N分别是A1B1、A1D1的中点,
∴MN∥BD,∴MN⊥AC1;
同理可证PN⊥AC1,
又PN∩MN=N,∴直线AC1⊥平面PQMN.
看了 (2014•湖北)如图,在正...的网友还看了以下:
1.一个负数整数a与其倒数1/a,相反数-a相比较,正确的是()A.1/a>-a B.1/a<-a 2020-05-16 …
二重积分问题求平面x/a+y/b+z/c=1(a>0,b>0,c>0)被三坐标面所割出的有限部分的 2020-07-14 …
把下列各连化成最简整数比:(1)0.6:1..8:3.45(2)4又2分之1:3.6:0.81(3 2020-07-19 …
有理数a、b在数轴上的对应点位置如图所示(1)用“<”连接0、-a、-b、-1(2)化简:|a|- 2020-07-20 …
已知函数fx=ax^2+bx+c(a>0,b∈R,c∈R)已知函数f(x)=ax^2+bx+c(a 2020-07-26 …
一道证明题运用基本原理证明:如果a>0,1/a>0已知:A1.a+b=b+aA2.(a+b)+c=a 2020-10-31 …
几个简单的数学问题~[知道答案,但我想知道为什么,呵呵.要有过程哈.]1.a>0,b>0,c>0P= 2020-11-01 …
求一道数学题解(急)1/a+1/b+1/c=1/a+b+c,求证啊a+b=0或b+c=0或a+c=0 2020-11-05 …
有理数a,b,c在数轴上的位置.c——-1—a————0————1—b(1)化简:/a+1/+/a- 2020-11-21 …
思考题55.己知1/(a)+1/(a^2)+1/(a^3)+1=0,b^3+b^2+b+1=0,c^ 2021-01-21 …