早教吧作业答案频道 -->其他-->
已知函数f(x)=3x+a与函数g(x)=3x+2a在区间(b,c)上都有零点,则a2+2ab+2ac+4bcb2−2bc+c2的最小值为.
题目详情
已知函数f(x)=3x+a与函数g(x)=3x+2a在区间(b,c)上都有零点,则
的最小值为______.
a2+2ab+2ac+4bc |
b2−2bc+c2 |
▼优质解答
答案和解析
∵函数f(x)=3x+a,与函数g(x)=3x+2a在区间(b,c)上都有零点,且f(x)与g(x)均为增函数
∴f(b)=3b+a<0,即b<-
,
g(b)=3b+2a<0,即b<-
,
f(c)=3c+a>0,即c>-
,
g(c)=3c+2a>0,即c>-
,
∵当a>0时,a+2b<0,a+2c>0,
当a<0时,a+2b<0,a+2c>0,
当a=0时,a+2b<0,a+2c>0,
即a+2b<0,a+2c>0恒成立,即-a-2b>0,a+2c>0恒成立,
∴
=
=
=
=
=
≥
=-1,
∴
的最小值为-1,
故答案为:-1
∴f(b)=3b+a<0,即b<-
a |
3 |
g(b)=3b+2a<0,即b<-
2a |
3 |
f(c)=3c+a>0,即c>-
a |
3 |
g(c)=3c+2a>0,即c>-
2a |
3 |
∵当a>0时,a+2b<0,a+2c>0,
当a<0时,a+2b<0,a+2c>0,
当a=0时,a+2b<0,a+2c>0,
即a+2b<0,a+2c>0恒成立,即-a-2b>0,a+2c>0恒成立,
∴
a2+2ab+2ac+4bc |
b2−2bc+c2 |
=
(a+2b)(a+2c) |
(b−c)2 |
=
(a+2b)(a+2c) | ||
|
=
4(a+2b)(a+2c) |
[(a+2b)−(a+2c)]2 |
=
4(a+2b)(a+2c) |
(a+2b)2+(a+2c)2−2(a+2b)(a+2c) |
=
4(a+2b)(a+2c) |
(a+2b)2+(a+2c)2+2(−a−2b)(a+2c) |
≥
4(a+2b)(a+2c) |
4(−a−2b)(a+2c) |
∴
a2+2ab+2ac+4bc |
b2−2bc+c2 |
故答案为:-1
看了 已知函数f(x)=3x+a与...的网友还看了以下:
↖(^ω^)↗1已知函数f﹙x﹚={2/(x²+1)}+a是定义在R上的奇函数,则a=?2若f(x 2020-04-27 …
1,函数y=(a^2-5a+5)×a^x是指数函数,则a=2,指数函数y=4^x-3×2^x+3的 2020-05-02 …
若函数y=-x^2+2x+1在区间〔a,4〕上是单调减函数,则a的取值范围是?若函数y=-x^2+ 2020-05-20 …
已知函数F[X]=a-1/|x|求证函数在0,正无穷上是增函数已知函数F[X]为R上的奇函数,当X 2020-06-03 …
怎样证明“若函数f(x)=Ix+aI+b为奇函数,则a与b的平方和为0”?不好意思,函数是f(x) 2020-07-31 …
1.比较大小:(2/5)^-1/2与(0.4)^-3/2;(根号3/3)^0.76与(根号3)^- 2020-08-01 …
函数y=2|x-3|在a,a+1上为单调函数,则a的取值范围若奇函数f(x)与偶函数g(x)之和为 2020-08-02 …
若a加b小于零a乘b小于零则a大于零b大于零ba小于零b小于零cab两数一阵一 2020-11-18 …
高一下反函数1.若函数f(x)=a^x+1的反函数为单调递减函数,则a的取值范围是2.函数f(x)= 2020-12-08 …
数学高手请来一下、急需求解!⒈若函数y=x的平方+ax+3是偶函数,则a=⒉lg8+3lg5=⒊设定 2020-12-31 …